ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemnn0 GIF version

Theorem ennnfonelemnn0 12993
Description: Lemma for ennnfone 12996. A version of ennnfonelemen 12992 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemr.f (𝜑𝐹:ℕ0onto𝐴)
ennnfonelemr.n (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemnn0.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
ennnfonelemnn0 (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝑁,𝑦   𝑗,𝑁,𝑘,𝑛   𝜑,𝑘   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemnn0
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑟 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemr.f . . 3 (𝜑𝐹:ℕ0onto𝐴)
3 ennnfonelemnn0.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43frechashgf1o 10650 . . . . 5 𝑁:ω–1-1-onto→ℕ0
5 f1ofo 5579 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω–onto→ℕ0)
64, 5ax-mp 5 . . . 4 𝑁:ω–onto→ℕ0
76a1i 9 . . 3 (𝜑𝑁:ω–onto→ℕ0)
8 foco 5559 . . 3 ((𝐹:ℕ0onto𝐴𝑁:ω–onto→ℕ0) → (𝐹𝑁):ω–onto𝐴)
92, 7, 8syl2anc 411 . 2 (𝜑 → (𝐹𝑁):ω–onto𝐴)
10 oveq2 6009 . . . . . . 7 (𝑛 = (𝑁𝑝) → (0...𝑛) = (0...(𝑁𝑝)))
1110raleqdv 2734 . . . . . 6 (𝑛 = (𝑁𝑝) → (∀𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
1211rexbidv 2531 . . . . 5 (𝑛 = (𝑁𝑝) → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
13 ennnfonelemr.n . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
1413adantr 276 . . . . 5 ((𝜑𝑝 ∈ ω) → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
15 f1of 5572 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
164, 15ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
1716a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑁:ω⟶ℕ0)
18 simpr 110 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑝 ∈ ω)
1917, 18ffvelcdmd 5771 . . . . 5 ((𝜑𝑝 ∈ ω) → (𝑁𝑝) ∈ ℕ0)
2012, 14, 19rspcdva 2912 . . . 4 ((𝜑𝑝 ∈ ω) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
21 f1ocnv 5585 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
22 f1of 5572 . . . . . . . 8 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
234, 21, 22mp2b 8 . . . . . . 7 𝑁:ℕ0⟶ω
2423a1i 9 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ℕ0⟶ω)
25 simprl 529 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ℕ0)
2624, 25ffvelcdmd 5771 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑘) ∈ ω)
27 fveq2 5627 . . . . . . . . 9 (𝑗 = (𝑁𝑟) → (𝐹𝑗) = (𝐹‘(𝑁𝑟)))
2827neeq2d 2419 . . . . . . . 8 (𝑗 = (𝑁𝑟) → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟))))
29 simplrr 536 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
30 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ suc 𝑝)
3118ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑝 ∈ ω)
32 peano2 4687 . . . . . . . . . . . 12 (𝑝 ∈ ω → suc 𝑝 ∈ ω)
3331, 32syl 14 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → suc 𝑝 ∈ ω)
34 elnn 4698 . . . . . . . . . . 11 ((𝑟 ∈ suc 𝑝 ∧ suc 𝑝 ∈ ω) → 𝑟 ∈ ω)
3530, 33, 34syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ ω)
3616ffvelcdmi 5769 . . . . . . . . . 10 (𝑟 ∈ ω → (𝑁𝑟) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ ℕ0)
38 0zd 9458 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 0 ∈ ℤ)
3938, 3, 35, 33frec2uzltd 10625 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑟 ∈ suc 𝑝 → (𝑁𝑟) < (𝑁‘suc 𝑝)))
4030, 39mpd 13 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < (𝑁‘suc 𝑝))
4138, 3, 31frec2uzsucd 10623 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘suc 𝑝) = ((𝑁𝑝) + 1))
4240, 41breqtrd 4109 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < ((𝑁𝑝) + 1))
4319ad2antrr 488 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑝) ∈ ℕ0)
44 nn0leltp1 9510 . . . . . . . . . . 11 (((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑝) ∈ ℕ0) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4537, 43, 44syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4642, 45mpbird 167 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ≤ (𝑁𝑝))
47 fznn0 10309 . . . . . . . . . 10 ((𝑁𝑝) ∈ ℕ0 → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4843, 47syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4937, 46, 48mpbir2and 950 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ (0...(𝑁𝑝)))
5028, 29, 49rspcdva 2912 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟)))
5126adantr 276 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑘) ∈ ω)
52 fvco3 5705 . . . . . . . . 9 ((𝑁:ω⟶ℕ0 ∧ (𝑁𝑘) ∈ ω) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5316, 51, 52sylancr 414 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5425adantr 276 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑘 ∈ ℕ0)
55 f1ocnvfv2 5902 . . . . . . . . . 10 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ℕ0) → (𝑁‘(𝑁𝑘)) = 𝑘)
564, 54, 55sylancr 414 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘(𝑁𝑘)) = 𝑘)
5756fveq2d 5631 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
5853, 57eqtrd 2262 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹𝑘))
59 fvco3 5705 . . . . . . . 8 ((𝑁:ω⟶ℕ0𝑟 ∈ ω) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6016, 35, 59sylancr 414 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6150, 58, 603netr4d 2433 . . . . . 6 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
6261ralrimiva 2603 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
63 fveq2 5627 . . . . . . . 8 (𝑞 = (𝑁𝑘) → ((𝐹𝑁)‘𝑞) = ((𝐹𝑁)‘(𝑁𝑘)))
6463neeq1d 2418 . . . . . . 7 (𝑞 = (𝑁𝑘) → (((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6564ralbidv 2530 . . . . . 6 (𝑞 = (𝑁𝑘) → (∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6665rspcev 2907 . . . . 5 (((𝑁𝑘) ∈ ω ∧ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6726, 62, 66syl2anc 411 . . . 4 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6820, 67rexlimddv 2653 . . 3 ((𝜑𝑝 ∈ ω) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6968ralrimiva 2603 . 2 (𝜑 → ∀𝑝 ∈ ω ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
70 id 19 . . . 4 (𝑎 = 𝑥𝑎 = 𝑥)
71 dmeq 4923 . . . . . . 7 (𝑎 = 𝑥 → dom 𝑎 = dom 𝑥)
7271opeq1d 3863 . . . . . 6 (𝑎 = 𝑥 → ⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩)
7372sneqd 3679 . . . . 5 (𝑎 = 𝑥 → {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})
7470, 73uneq12d 3359 . . . 4 (𝑎 = 𝑥 → (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}))
7570, 74ifeq12d 3622 . . 3 (𝑎 = 𝑥 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})))
76 fveq2 5627 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁)‘𝑏) = ((𝐹𝑁)‘𝑦))
77 imaeq2 5064 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁) “ 𝑏) = ((𝐹𝑁) “ 𝑦))
7876, 77eleq12d 2300 . . . 4 (𝑏 = 𝑦 → (((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏) ↔ ((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦)))
7976opeq2d 3864 . . . . . 6 (𝑏 = 𝑦 → ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩)
8079sneqd 3679 . . . . 5 (𝑏 = 𝑦 → {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})
8180uneq2d 3358 . . . 4 (𝑏 = 𝑦 → (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩}))
8278, 81ifbieq2d 3627 . . 3 (𝑏 = 𝑦 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
8375, 82cbvmpov 6084 . 2 (𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))) = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
84 eqeq1 2236 . . . 4 (𝑎 = 𝑥 → (𝑎 = 0 ↔ 𝑥 = 0))
85 fvoveq1 6024 . . . 4 (𝑎 = 𝑥 → (𝑁‘(𝑎 − 1)) = (𝑁‘(𝑥 − 1)))
8684, 85ifbieq2d 3627 . . 3 (𝑎 = 𝑥 → if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))) = if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
8786cbvmptv 4180 . 2 (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
88 eqid 2229 . 2 seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))))) = seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))
89 fveq2 5627 . . 3 (𝑖 = 𝑐 → (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐))
9089cbviunv 4004 . 2 𝑖 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = 𝑐 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐)
911, 9, 69, 83, 3, 87, 88, 90ennnfonelemen 12992 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  cun 3195  c0 3491  ifcif 3602  {csn 3666  cop 3669   ciun 3965   class class class wbr 4083  cmpt 4145  suc csuc 4456  ωcom 4682  ccnv 4718  dom cdm 4719  cima 4722  ccom 4723  wf 5314  ontowfo 5316  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  cmpo 6003  freccfrec 6536  pm cpm 6796  cen 6885  0cc0 7999  1c1 8000   + caddc 8002   < clt 8181  cle 8182  cmin 8317  cn 9110  0cn0 9369  cz 9446  ...cfz 10204  seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-er 6680  df-pm 6798  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670
This theorem is referenced by:  ennnfonelemr  12994
  Copyright terms: Public domain W3C validator