Step | Hyp | Ref
| Expression |
1 | | ennnfonelemr.dceq |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
2 | | ennnfonelemr.f |
. . 3
⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) |
3 | | ennnfonelemnn0.n |
. . . . . 6
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
4 | 3 | frechashgf1o 10363 |
. . . . 5
⊢ 𝑁:ω–1-1-onto→ℕ0 |
5 | | f1ofo 5439 |
. . . . 5
⊢ (𝑁:ω–1-1-onto→ℕ0 → 𝑁:ω–onto→ℕ0) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ 𝑁:ω–onto→ℕ0 |
7 | 6 | a1i 9 |
. . 3
⊢ (𝜑 → 𝑁:ω–onto→ℕ0) |
8 | | foco 5420 |
. . 3
⊢ ((𝐹:ℕ0–onto→𝐴 ∧ 𝑁:ω–onto→ℕ0) → (𝐹 ∘ 𝑁):ω–onto→𝐴) |
9 | 2, 7, 8 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝑁):ω–onto→𝐴) |
10 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑛 = (𝑁‘𝑝) → (0...𝑛) = (0...(𝑁‘𝑝))) |
11 | 10 | raleqdv 2667 |
. . . . . 6
⊢ (𝑛 = (𝑁‘𝑝) → (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑗 ∈ (0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) |
12 | 11 | rexbidv 2467 |
. . . . 5
⊢ (𝑛 = (𝑁‘𝑝) → (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) |
13 | | ennnfonelemr.n |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0
∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
14 | 13 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → ∀𝑛 ∈ ℕ0
∃𝑘 ∈
ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
15 | | f1of 5432 |
. . . . . . . 8
⊢ (𝑁:ω–1-1-onto→ℕ0 → 𝑁:ω⟶ℕ0) |
16 | 4, 15 | ax-mp 5 |
. . . . . . 7
⊢ 𝑁:ω⟶ℕ0 |
17 | 16 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → 𝑁:ω⟶ℕ0) |
18 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → 𝑝 ∈ ω) |
19 | 17, 18 | ffvelrnd 5621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → (𝑁‘𝑝) ∈
ℕ0) |
20 | 12, 14, 19 | rspcdva 2835 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → ∃𝑘 ∈ ℕ0
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
21 | | f1ocnv 5445 |
. . . . . . . 8
⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) |
22 | | f1of 5432 |
. . . . . . . 8
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) |
23 | 4, 21, 22 | mp2b 8 |
. . . . . . 7
⊢ ◡𝑁:ℕ0⟶ω |
24 | 23 | a1i 9 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ◡𝑁:ℕ0⟶ω) |
25 | | simprl 521 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑘 ∈ ℕ0) |
26 | 24, 25 | ffvelrnd 5621 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (◡𝑁‘𝑘) ∈ ω) |
27 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑗 = (𝑁‘𝑟) → (𝐹‘𝑗) = (𝐹‘(𝑁‘𝑟))) |
28 | 27 | neeq2d 2355 |
. . . . . . . 8
⊢ (𝑗 = (𝑁‘𝑟) → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘(𝑁‘𝑟)))) |
29 | | simplrr 526 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ∀𝑗 ∈ (0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
30 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ suc 𝑝) |
31 | 18 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑝 ∈ ω) |
32 | | peano2 4572 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ω → suc 𝑝 ∈
ω) |
33 | 31, 32 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → suc 𝑝 ∈ ω) |
34 | | elnn 4583 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ suc 𝑝 ∧ suc 𝑝 ∈ ω) → 𝑟 ∈ ω) |
35 | 30, 33, 34 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ ω) |
36 | 16 | ffvelrni 5619 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ω → (𝑁‘𝑟) ∈
ℕ0) |
37 | 35, 36 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑟) ∈
ℕ0) |
38 | | 0zd 9203 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 0 ∈ ℤ) |
39 | 38, 3, 35, 33 | frec2uzltd 10338 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑟 ∈ suc 𝑝 → (𝑁‘𝑟) < (𝑁‘suc 𝑝))) |
40 | 30, 39 | mpd 13 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑟) < (𝑁‘suc 𝑝)) |
41 | 38, 3, 31 | frec2uzsucd 10336 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘suc 𝑝) = ((𝑁‘𝑝) + 1)) |
42 | 40, 41 | breqtrd 4008 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑟) < ((𝑁‘𝑝) + 1)) |
43 | 19 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑝) ∈
ℕ0) |
44 | | nn0leltp1 9254 |
. . . . . . . . . . 11
⊢ (((𝑁‘𝑟) ∈ ℕ0 ∧ (𝑁‘𝑝) ∈ ℕ0) → ((𝑁‘𝑟) ≤ (𝑁‘𝑝) ↔ (𝑁‘𝑟) < ((𝑁‘𝑝) + 1))) |
45 | 37, 43, 44 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁‘𝑟) ≤ (𝑁‘𝑝) ↔ (𝑁‘𝑟) < ((𝑁‘𝑝) + 1))) |
46 | 42, 45 | mpbird 166 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑟) ≤ (𝑁‘𝑝)) |
47 | | fznn0 10048 |
. . . . . . . . . 10
⊢ ((𝑁‘𝑝) ∈ ℕ0 → ((𝑁‘𝑟) ∈ (0...(𝑁‘𝑝)) ↔ ((𝑁‘𝑟) ∈ ℕ0 ∧ (𝑁‘𝑟) ≤ (𝑁‘𝑝)))) |
48 | 43, 47 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁‘𝑟) ∈ (0...(𝑁‘𝑝)) ↔ ((𝑁‘𝑟) ∈ ℕ0 ∧ (𝑁‘𝑟) ≤ (𝑁‘𝑝)))) |
49 | 37, 46, 48 | mpbir2and 934 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘𝑟) ∈ (0...(𝑁‘𝑝))) |
50 | 28, 29, 49 | rspcdva 2835 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹‘𝑘) ≠ (𝐹‘(𝑁‘𝑟))) |
51 | 26 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (◡𝑁‘𝑘) ∈ ω) |
52 | | fvco3 5557 |
. . . . . . . . 9
⊢ ((𝑁:ω⟶ℕ0 ∧
(◡𝑁‘𝑘) ∈ ω) → ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) = (𝐹‘(𝑁‘(◡𝑁‘𝑘)))) |
53 | 16, 51, 52 | sylancr 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) = (𝐹‘(𝑁‘(◡𝑁‘𝑘)))) |
54 | 25 | adantr 274 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑘 ∈ ℕ0) |
55 | | f1ocnvfv2 5746 |
. . . . . . . . . 10
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑘 ∈ ℕ0) → (𝑁‘(◡𝑁‘𝑘)) = 𝑘) |
56 | 4, 54, 55 | sylancr 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘(◡𝑁‘𝑘)) = 𝑘) |
57 | 56 | fveq2d 5490 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹‘(𝑁‘(◡𝑁‘𝑘))) = (𝐹‘𝑘)) |
58 | 53, 57 | eqtrd 2198 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) = (𝐹‘𝑘)) |
59 | | fvco3 5557 |
. . . . . . . 8
⊢ ((𝑁:ω⟶ℕ0 ∧
𝑟 ∈ ω) →
((𝐹 ∘ 𝑁)‘𝑟) = (𝐹‘(𝑁‘𝑟))) |
60 | 16, 35, 59 | sylancr 411 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹 ∘ 𝑁)‘𝑟) = (𝐹‘(𝑁‘𝑟))) |
61 | 50, 58, 60 | 3netr4d 2369 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
62 | 61 | ralrimiva 2539 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
63 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑞 = (◡𝑁‘𝑘) → ((𝐹 ∘ 𝑁)‘𝑞) = ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘))) |
64 | 63 | neeq1d 2354 |
. . . . . . 7
⊢ (𝑞 = (◡𝑁‘𝑘) → (((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟) ↔ ((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) ≠ ((𝐹 ∘ 𝑁)‘𝑟))) |
65 | 64 | ralbidv 2466 |
. . . . . 6
⊢ (𝑞 = (◡𝑁‘𝑘) → (∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟) ↔ ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) ≠ ((𝐹 ∘ 𝑁)‘𝑟))) |
66 | 65 | rspcev 2830 |
. . . . 5
⊢ (((◡𝑁‘𝑘) ∈ ω ∧ ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘(◡𝑁‘𝑘)) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
67 | 26, 62, 66 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧
∀𝑗 ∈
(0...(𝑁‘𝑝))(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
68 | 20, 67 | rexlimddv 2588 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ ω) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
69 | 68 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑝 ∈ ω ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹 ∘ 𝑁)‘𝑞) ≠ ((𝐹 ∘ 𝑁)‘𝑟)) |
70 | | id 19 |
. . . 4
⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) |
71 | | dmeq 4804 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → dom 𝑎 = dom 𝑥) |
72 | 71 | opeq1d 3764 |
. . . . . 6
⊢ (𝑎 = 𝑥 → 〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉 = 〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉) |
73 | 72 | sneqd 3589 |
. . . . 5
⊢ (𝑎 = 𝑥 → {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉} = {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉}) |
74 | 70, 73 | uneq12d 3277 |
. . . 4
⊢ (𝑎 = 𝑥 → (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}) = (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉})) |
75 | 70, 74 | ifeq12d 3539 |
. . 3
⊢ (𝑎 = 𝑥 → if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉})) = if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉}))) |
76 | | fveq2 5486 |
. . . . 5
⊢ (𝑏 = 𝑦 → ((𝐹 ∘ 𝑁)‘𝑏) = ((𝐹 ∘ 𝑁)‘𝑦)) |
77 | | imaeq2 4942 |
. . . . 5
⊢ (𝑏 = 𝑦 → ((𝐹 ∘ 𝑁) “ 𝑏) = ((𝐹 ∘ 𝑁) “ 𝑦)) |
78 | 76, 77 | eleq12d 2237 |
. . . 4
⊢ (𝑏 = 𝑦 → (((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏) ↔ ((𝐹 ∘ 𝑁)‘𝑦) ∈ ((𝐹 ∘ 𝑁) “ 𝑦))) |
79 | 76 | opeq2d 3765 |
. . . . . 6
⊢ (𝑏 = 𝑦 → 〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉 = 〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑦)〉) |
80 | 79 | sneqd 3589 |
. . . . 5
⊢ (𝑏 = 𝑦 → {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉} = {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑦)〉}) |
81 | 80 | uneq2d 3276 |
. . . 4
⊢ (𝑏 = 𝑦 → (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉}) = (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑦)〉})) |
82 | 78, 81 | ifbieq2d 3544 |
. . 3
⊢ (𝑏 = 𝑦 → if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑏)〉})) = if(((𝐹 ∘ 𝑁)‘𝑦) ∈ ((𝐹 ∘ 𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑦)〉}))) |
83 | 75, 82 | cbvmpov 5922 |
. 2
⊢ (𝑎 ∈ (𝐴 ↑pm ω), 𝑏 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))) = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑦) ∈ ((𝐹 ∘ 𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, ((𝐹 ∘ 𝑁)‘𝑦)〉}))) |
84 | | eqeq1 2172 |
. . . 4
⊢ (𝑎 = 𝑥 → (𝑎 = 0 ↔ 𝑥 = 0)) |
85 | | fvoveq1 5865 |
. . . 4
⊢ (𝑎 = 𝑥 → (◡𝑁‘(𝑎 − 1)) = (◡𝑁‘(𝑥 − 1))) |
86 | 84, 85 | ifbieq2d 3544 |
. . 3
⊢ (𝑎 = 𝑥 → if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1))) = if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
87 | 86 | cbvmptv 4078 |
. 2
⊢ (𝑎 ∈ ℕ0
↦ if(𝑎 = 0, ∅,
(◡𝑁‘(𝑎 − 1)))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
88 | | eqid 2165 |
. 2
⊢
seq0((𝑎 ∈
(𝐴
↑pm ω), 𝑏 ∈ ω ↦ if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1))))) = seq0((𝑎 ∈ (𝐴 ↑pm ω), 𝑏 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1))))) |
89 | | fveq2 5486 |
. . 3
⊢ (𝑖 = 𝑐 → (seq0((𝑎 ∈ (𝐴 ↑pm ω), 𝑏 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1)))))‘𝑖) = (seq0((𝑎 ∈ (𝐴 ↑pm ω), 𝑏 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1)))))‘𝑐)) |
90 | 89 | cbviunv 3905 |
. 2
⊢ ∪ 𝑖 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴 ↑pm ω), 𝑏 ∈ ω ↦
if(((𝐹 ∘ 𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1)))))‘𝑖) = ∪ 𝑐 ∈ ℕ0
(seq0((𝑎 ∈ (𝐴 ↑pm
ω), 𝑏 ∈ ω
↦ if(((𝐹 ∘
𝑁)‘𝑏) ∈ ((𝐹 ∘ 𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {〈dom 𝑎, ((𝐹 ∘ 𝑁)‘𝑏)〉}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (◡𝑁‘(𝑎 − 1)))))‘𝑐) |
91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12354 |
1
⊢ (𝜑 → 𝐴 ≈ ℕ) |