ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemnn0 GIF version

Theorem ennnfonelemnn0 12579
Description: Lemma for ennnfone 12582. A version of ennnfonelemen 12578 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemr.f (𝜑𝐹:ℕ0onto𝐴)
ennnfonelemr.n (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemnn0.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
ennnfonelemnn0 (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝑁,𝑦   𝑗,𝑁,𝑘,𝑛   𝜑,𝑘   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemnn0
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑟 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemr.f . . 3 (𝜑𝐹:ℕ0onto𝐴)
3 ennnfonelemnn0.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43frechashgf1o 10499 . . . . 5 𝑁:ω–1-1-onto→ℕ0
5 f1ofo 5507 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω–onto→ℕ0)
64, 5ax-mp 5 . . . 4 𝑁:ω–onto→ℕ0
76a1i 9 . . 3 (𝜑𝑁:ω–onto→ℕ0)
8 foco 5487 . . 3 ((𝐹:ℕ0onto𝐴𝑁:ω–onto→ℕ0) → (𝐹𝑁):ω–onto𝐴)
92, 7, 8syl2anc 411 . 2 (𝜑 → (𝐹𝑁):ω–onto𝐴)
10 oveq2 5926 . . . . . . 7 (𝑛 = (𝑁𝑝) → (0...𝑛) = (0...(𝑁𝑝)))
1110raleqdv 2696 . . . . . 6 (𝑛 = (𝑁𝑝) → (∀𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
1211rexbidv 2495 . . . . 5 (𝑛 = (𝑁𝑝) → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
13 ennnfonelemr.n . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
1413adantr 276 . . . . 5 ((𝜑𝑝 ∈ ω) → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
15 f1of 5500 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
164, 15ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
1716a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑁:ω⟶ℕ0)
18 simpr 110 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑝 ∈ ω)
1917, 18ffvelcdmd 5694 . . . . 5 ((𝜑𝑝 ∈ ω) → (𝑁𝑝) ∈ ℕ0)
2012, 14, 19rspcdva 2869 . . . 4 ((𝜑𝑝 ∈ ω) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
21 f1ocnv 5513 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
22 f1of 5500 . . . . . . . 8 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
234, 21, 22mp2b 8 . . . . . . 7 𝑁:ℕ0⟶ω
2423a1i 9 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ℕ0⟶ω)
25 simprl 529 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ℕ0)
2624, 25ffvelcdmd 5694 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑘) ∈ ω)
27 fveq2 5554 . . . . . . . . 9 (𝑗 = (𝑁𝑟) → (𝐹𝑗) = (𝐹‘(𝑁𝑟)))
2827neeq2d 2383 . . . . . . . 8 (𝑗 = (𝑁𝑟) → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟))))
29 simplrr 536 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
30 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ suc 𝑝)
3118ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑝 ∈ ω)
32 peano2 4627 . . . . . . . . . . . 12 (𝑝 ∈ ω → suc 𝑝 ∈ ω)
3331, 32syl 14 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → suc 𝑝 ∈ ω)
34 elnn 4638 . . . . . . . . . . 11 ((𝑟 ∈ suc 𝑝 ∧ suc 𝑝 ∈ ω) → 𝑟 ∈ ω)
3530, 33, 34syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ ω)
3616ffvelcdmi 5692 . . . . . . . . . 10 (𝑟 ∈ ω → (𝑁𝑟) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ ℕ0)
38 0zd 9329 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 0 ∈ ℤ)
3938, 3, 35, 33frec2uzltd 10474 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑟 ∈ suc 𝑝 → (𝑁𝑟) < (𝑁‘suc 𝑝)))
4030, 39mpd 13 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < (𝑁‘suc 𝑝))
4138, 3, 31frec2uzsucd 10472 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘suc 𝑝) = ((𝑁𝑝) + 1))
4240, 41breqtrd 4055 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < ((𝑁𝑝) + 1))
4319ad2antrr 488 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑝) ∈ ℕ0)
44 nn0leltp1 9380 . . . . . . . . . . 11 (((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑝) ∈ ℕ0) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4537, 43, 44syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4642, 45mpbird 167 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ≤ (𝑁𝑝))
47 fznn0 10179 . . . . . . . . . 10 ((𝑁𝑝) ∈ ℕ0 → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4843, 47syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4937, 46, 48mpbir2and 946 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ (0...(𝑁𝑝)))
5028, 29, 49rspcdva 2869 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟)))
5126adantr 276 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑘) ∈ ω)
52 fvco3 5628 . . . . . . . . 9 ((𝑁:ω⟶ℕ0 ∧ (𝑁𝑘) ∈ ω) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5316, 51, 52sylancr 414 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5425adantr 276 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑘 ∈ ℕ0)
55 f1ocnvfv2 5821 . . . . . . . . . 10 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ℕ0) → (𝑁‘(𝑁𝑘)) = 𝑘)
564, 54, 55sylancr 414 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘(𝑁𝑘)) = 𝑘)
5756fveq2d 5558 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
5853, 57eqtrd 2226 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹𝑘))
59 fvco3 5628 . . . . . . . 8 ((𝑁:ω⟶ℕ0𝑟 ∈ ω) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6016, 35, 59sylancr 414 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6150, 58, 603netr4d 2397 . . . . . 6 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
6261ralrimiva 2567 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
63 fveq2 5554 . . . . . . . 8 (𝑞 = (𝑁𝑘) → ((𝐹𝑁)‘𝑞) = ((𝐹𝑁)‘(𝑁𝑘)))
6463neeq1d 2382 . . . . . . 7 (𝑞 = (𝑁𝑘) → (((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6564ralbidv 2494 . . . . . 6 (𝑞 = (𝑁𝑘) → (∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6665rspcev 2864 . . . . 5 (((𝑁𝑘) ∈ ω ∧ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6726, 62, 66syl2anc 411 . . . 4 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6820, 67rexlimddv 2616 . . 3 ((𝜑𝑝 ∈ ω) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6968ralrimiva 2567 . 2 (𝜑 → ∀𝑝 ∈ ω ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
70 id 19 . . . 4 (𝑎 = 𝑥𝑎 = 𝑥)
71 dmeq 4862 . . . . . . 7 (𝑎 = 𝑥 → dom 𝑎 = dom 𝑥)
7271opeq1d 3810 . . . . . 6 (𝑎 = 𝑥 → ⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩)
7372sneqd 3631 . . . . 5 (𝑎 = 𝑥 → {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})
7470, 73uneq12d 3314 . . . 4 (𝑎 = 𝑥 → (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}))
7570, 74ifeq12d 3576 . . 3 (𝑎 = 𝑥 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})))
76 fveq2 5554 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁)‘𝑏) = ((𝐹𝑁)‘𝑦))
77 imaeq2 5001 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁) “ 𝑏) = ((𝐹𝑁) “ 𝑦))
7876, 77eleq12d 2264 . . . 4 (𝑏 = 𝑦 → (((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏) ↔ ((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦)))
7976opeq2d 3811 . . . . . 6 (𝑏 = 𝑦 → ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩)
8079sneqd 3631 . . . . 5 (𝑏 = 𝑦 → {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})
8180uneq2d 3313 . . . 4 (𝑏 = 𝑦 → (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩}))
8278, 81ifbieq2d 3581 . . 3 (𝑏 = 𝑦 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
8375, 82cbvmpov 5998 . 2 (𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))) = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
84 eqeq1 2200 . . . 4 (𝑎 = 𝑥 → (𝑎 = 0 ↔ 𝑥 = 0))
85 fvoveq1 5941 . . . 4 (𝑎 = 𝑥 → (𝑁‘(𝑎 − 1)) = (𝑁‘(𝑥 − 1)))
8684, 85ifbieq2d 3581 . . 3 (𝑎 = 𝑥 → if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))) = if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
8786cbvmptv 4125 . 2 (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
88 eqid 2193 . 2 seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))))) = seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))
89 fveq2 5554 . . 3 (𝑖 = 𝑐 → (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐))
9089cbviunv 3951 . 2 𝑖 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = 𝑐 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐)
911, 9, 69, 83, 3, 87, 88, 90ennnfonelemen 12578 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cun 3151  c0 3446  ifcif 3557  {csn 3618  cop 3621   ciun 3912   class class class wbr 4029  cmpt 4090  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  cima 4662  ccom 4663  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  pm cpm 6703  cen 6792  0cc0 7872  1c1 7873   + caddc 7875   < clt 8054  cle 8055  cmin 8190  cn 8982  0cn0 9240  cz 9317  ...cfz 10074  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-er 6587  df-pm 6705  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519
This theorem is referenced by:  ennnfonelemr  12580
  Copyright terms: Public domain W3C validator