ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemnn0 GIF version

Theorem ennnfonelemnn0 12639
Description: Lemma for ennnfone 12642. A version of ennnfonelemen 12638 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemr.f (𝜑𝐹:ℕ0onto𝐴)
ennnfonelemr.n (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemnn0.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
ennnfonelemnn0 (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝑁,𝑦   𝑗,𝑁,𝑘,𝑛   𝜑,𝑘   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemnn0
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑟 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemr.f . . 3 (𝜑𝐹:ℕ0onto𝐴)
3 ennnfonelemnn0.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43frechashgf1o 10520 . . . . 5 𝑁:ω–1-1-onto→ℕ0
5 f1ofo 5511 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω–onto→ℕ0)
64, 5ax-mp 5 . . . 4 𝑁:ω–onto→ℕ0
76a1i 9 . . 3 (𝜑𝑁:ω–onto→ℕ0)
8 foco 5491 . . 3 ((𝐹:ℕ0onto𝐴𝑁:ω–onto→ℕ0) → (𝐹𝑁):ω–onto𝐴)
92, 7, 8syl2anc 411 . 2 (𝜑 → (𝐹𝑁):ω–onto𝐴)
10 oveq2 5930 . . . . . . 7 (𝑛 = (𝑁𝑝) → (0...𝑛) = (0...(𝑁𝑝)))
1110raleqdv 2699 . . . . . 6 (𝑛 = (𝑁𝑝) → (∀𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
1211rexbidv 2498 . . . . 5 (𝑛 = (𝑁𝑝) → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗)))
13 ennnfonelemr.n . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
1413adantr 276 . . . . 5 ((𝜑𝑝 ∈ ω) → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
15 f1of 5504 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
164, 15ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
1716a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑁:ω⟶ℕ0)
18 simpr 110 . . . . . 6 ((𝜑𝑝 ∈ ω) → 𝑝 ∈ ω)
1917, 18ffvelcdmd 5698 . . . . 5 ((𝜑𝑝 ∈ ω) → (𝑁𝑝) ∈ ℕ0)
2012, 14, 19rspcdva 2873 . . . 4 ((𝜑𝑝 ∈ ω) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
21 f1ocnv 5517 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
22 f1of 5504 . . . . . . . 8 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
234, 21, 22mp2b 8 . . . . . . 7 𝑁:ℕ0⟶ω
2423a1i 9 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ℕ0⟶ω)
25 simprl 529 . . . . . 6 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ℕ0)
2624, 25ffvelcdmd 5698 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑘) ∈ ω)
27 fveq2 5558 . . . . . . . . 9 (𝑗 = (𝑁𝑟) → (𝐹𝑗) = (𝐹‘(𝑁𝑟)))
2827neeq2d 2386 . . . . . . . 8 (𝑗 = (𝑁𝑟) → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟))))
29 simplrr 536 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))
30 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ suc 𝑝)
3118ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑝 ∈ ω)
32 peano2 4631 . . . . . . . . . . . 12 (𝑝 ∈ ω → suc 𝑝 ∈ ω)
3331, 32syl 14 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → suc 𝑝 ∈ ω)
34 elnn 4642 . . . . . . . . . . 11 ((𝑟 ∈ suc 𝑝 ∧ suc 𝑝 ∈ ω) → 𝑟 ∈ ω)
3530, 33, 34syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑟 ∈ ω)
3616ffvelcdmi 5696 . . . . . . . . . 10 (𝑟 ∈ ω → (𝑁𝑟) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ ℕ0)
38 0zd 9338 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 0 ∈ ℤ)
3938, 3, 35, 33frec2uzltd 10495 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑟 ∈ suc 𝑝 → (𝑁𝑟) < (𝑁‘suc 𝑝)))
4030, 39mpd 13 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < (𝑁‘suc 𝑝))
4138, 3, 31frec2uzsucd 10493 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘suc 𝑝) = ((𝑁𝑝) + 1))
4240, 41breqtrd 4059 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) < ((𝑁𝑝) + 1))
4319ad2antrr 488 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑝) ∈ ℕ0)
44 nn0leltp1 9389 . . . . . . . . . . 11 (((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑝) ∈ ℕ0) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4537, 43, 44syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ≤ (𝑁𝑝) ↔ (𝑁𝑟) < ((𝑁𝑝) + 1)))
4642, 45mpbird 167 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ≤ (𝑁𝑝))
47 fznn0 10188 . . . . . . . . . 10 ((𝑁𝑝) ∈ ℕ0 → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4843, 47syl 14 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝑁𝑟) ∈ (0...(𝑁𝑝)) ↔ ((𝑁𝑟) ∈ ℕ0 ∧ (𝑁𝑟) ≤ (𝑁𝑝))))
4937, 46, 48mpbir2and 946 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑟) ∈ (0...(𝑁𝑝)))
5028, 29, 49rspcdva 2873 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹𝑘) ≠ (𝐹‘(𝑁𝑟)))
5126adantr 276 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁𝑘) ∈ ω)
52 fvco3 5632 . . . . . . . . 9 ((𝑁:ω⟶ℕ0 ∧ (𝑁𝑘) ∈ ω) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5316, 51, 52sylancr 414 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
5425adantr 276 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → 𝑘 ∈ ℕ0)
55 f1ocnvfv2 5825 . . . . . . . . . 10 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ℕ0) → (𝑁‘(𝑁𝑘)) = 𝑘)
564, 54, 55sylancr 414 . . . . . . . . 9 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝑁‘(𝑁𝑘)) = 𝑘)
5756fveq2d 5562 . . . . . . . 8 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
5853, 57eqtrd 2229 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹𝑘))
59 fvco3 5632 . . . . . . . 8 ((𝑁:ω⟶ℕ0𝑟 ∈ ω) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6016, 35, 59sylancr 414 . . . . . . 7 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘𝑟) = (𝐹‘(𝑁𝑟)))
6150, 58, 603netr4d 2400 . . . . . 6 ((((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) ∧ 𝑟 ∈ suc 𝑝) → ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
6261ralrimiva 2570 . . . . 5 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟))
63 fveq2 5558 . . . . . . . 8 (𝑞 = (𝑁𝑘) → ((𝐹𝑁)‘𝑞) = ((𝐹𝑁)‘(𝑁𝑘)))
6463neeq1d 2385 . . . . . . 7 (𝑞 = (𝑁𝑘) → (((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6564ralbidv 2497 . . . . . 6 (𝑞 = (𝑁𝑘) → (∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟) ↔ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)))
6665rspcev 2868 . . . . 5 (((𝑁𝑘) ∈ ω ∧ ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘(𝑁𝑘)) ≠ ((𝐹𝑁)‘𝑟)) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6726, 62, 66syl2anc 411 . . . 4 (((𝜑𝑝 ∈ ω) ∧ (𝑘 ∈ ℕ0 ∧ ∀𝑗 ∈ (0...(𝑁𝑝))(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6820, 67rexlimddv 2619 . . 3 ((𝜑𝑝 ∈ ω) → ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
6968ralrimiva 2570 . 2 (𝜑 → ∀𝑝 ∈ ω ∃𝑞 ∈ ω ∀𝑟 ∈ suc 𝑝((𝐹𝑁)‘𝑞) ≠ ((𝐹𝑁)‘𝑟))
70 id 19 . . . 4 (𝑎 = 𝑥𝑎 = 𝑥)
71 dmeq 4866 . . . . . . 7 (𝑎 = 𝑥 → dom 𝑎 = dom 𝑥)
7271opeq1d 3814 . . . . . 6 (𝑎 = 𝑥 → ⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩)
7372sneqd 3635 . . . . 5 (𝑎 = 𝑥 → {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})
7470, 73uneq12d 3318 . . . 4 (𝑎 = 𝑥 → (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}))
7570, 74ifeq12d 3580 . . 3 (𝑎 = 𝑥 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})))
76 fveq2 5558 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁)‘𝑏) = ((𝐹𝑁)‘𝑦))
77 imaeq2 5005 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑁) “ 𝑏) = ((𝐹𝑁) “ 𝑦))
7876, 77eleq12d 2267 . . . 4 (𝑏 = 𝑦 → (((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏) ↔ ((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦)))
7976opeq2d 3815 . . . . . 6 (𝑏 = 𝑦 → ⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩ = ⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩)
8079sneqd 3635 . . . . 5 (𝑏 = 𝑦 → {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩} = {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})
8180uneq2d 3317 . . . 4 (𝑏 = 𝑦 → (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩}) = (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩}))
8278, 81ifbieq2d 3585 . . 3 (𝑏 = 𝑦 → if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑏)⟩})) = if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
8375, 82cbvmpov 6002 . 2 (𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))) = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if(((𝐹𝑁)‘𝑦) ∈ ((𝐹𝑁) “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, ((𝐹𝑁)‘𝑦)⟩})))
84 eqeq1 2203 . . . 4 (𝑎 = 𝑥 → (𝑎 = 0 ↔ 𝑥 = 0))
85 fvoveq1 5945 . . . 4 (𝑎 = 𝑥 → (𝑁‘(𝑎 − 1)) = (𝑁‘(𝑥 − 1)))
8684, 85ifbieq2d 3585 . . 3 (𝑎 = 𝑥 → if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))) = if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
8786cbvmptv 4129 . 2 (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
88 eqid 2196 . 2 seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1))))) = seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))
89 fveq2 5558 . . 3 (𝑖 = 𝑐 → (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐))
9089cbviunv 3955 . 2 𝑖 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑖) = 𝑐 ∈ ℕ0 (seq0((𝑎 ∈ (𝐴pm ω), 𝑏 ∈ ω ↦ if(((𝐹𝑁)‘𝑏) ∈ ((𝐹𝑁) “ 𝑏), 𝑎, (𝑎 ∪ {⟨dom 𝑎, ((𝐹𝑁)‘𝑏)⟩}))), (𝑎 ∈ ℕ0 ↦ if(𝑎 = 0, ∅, (𝑁‘(𝑎 − 1)))))‘𝑐)
911, 9, 69, 83, 3, 87, 88, 90ennnfonelemen 12638 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  cun 3155  c0 3450  ifcif 3561  {csn 3622  cop 3625   ciun 3916   class class class wbr 4033  cmpt 4094  suc csuc 4400  ωcom 4626  ccnv 4662  dom cdm 4663  cima 4666  ccom 4667  wf 5254  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cmpo 5924  freccfrec 6448  pm cpm 6708  cen 6797  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cmin 8197  cn 8990  0cn0 9249  cz 9326  ...cfz 10083  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-er 6592  df-pm 6710  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540
This theorem is referenced by:  ennnfonelemr  12640
  Copyright terms: Public domain W3C validator