| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq12d | GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| neeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| neeq12d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | neeq1d 2385 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| 3 | neeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | neeq2d 2386 | . 2 ⊢ (𝜑 → (𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: 3netr3d 2399 3netr4d 2400 exmidapne 7327 ennnfonelemim 12641 ctinfom 12645 isnzr 13737 opprnzrbg 13741 apdiff 15692 |
| Copyright terms: Public domain | W3C validator |