Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq12d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
neeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
neeq12d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | neeq1d 2358 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
3 | neeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | neeq2d 2359 | . 2 ⊢ (𝜑 → (𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-ne 2341 |
This theorem is referenced by: 3netr3d 2372 3netr4d 2373 ennnfonelemim 12379 ctinfom 12383 apdiff 14080 |
Copyright terms: Public domain | W3C validator |