| Step | Hyp | Ref
| Expression |
| 1 | | hbae 1732 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
| 2 | | hbae 1732 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑓∀𝑥 𝑥 = 𝑦) |
| 3 | | ax-8 1518 |
. . . . 5
⊢ (𝑥 = 𝑓 → (𝑥 = 𝑦 → 𝑓 = 𝑦)) |
| 4 | 3 | spimv 1825 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑓 = 𝑦) |
| 5 | 2, 4 | alrimih 1483 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑓 𝑓 = 𝑦) |
| 6 | | ax-8 1518 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑓 → 𝑢 = 𝑓)) |
| 7 | | equcomi 1718 |
. . . . . . . 8
⊢ (𝑢 = 𝑓 → 𝑓 = 𝑢) |
| 8 | 6, 7 | syl6 33 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑓 → 𝑓 = 𝑢)) |
| 9 | 8 | spimv 1825 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑓 → 𝑓 = 𝑢) |
| 10 | 9 | alequcoms 1530 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑦 → 𝑓 = 𝑢) |
| 11 | 10 | a5i 1557 |
. . . 4
⊢
(∀𝑓 𝑓 = 𝑦 → ∀𝑓 𝑓 = 𝑢) |
| 12 | | hbae 1732 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑢 → ∀𝑣∀𝑓 𝑓 = 𝑢) |
| 13 | | ax-8 1518 |
. . . . . 6
⊢ (𝑓 = 𝑣 → (𝑓 = 𝑢 → 𝑣 = 𝑢)) |
| 14 | 13 | spimv 1825 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑢 → 𝑣 = 𝑢) |
| 15 | 12, 14 | alrimih 1483 |
. . . 4
⊢
(∀𝑓 𝑓 = 𝑢 → ∀𝑣 𝑣 = 𝑢) |
| 16 | | alequcom 1529 |
. . . 4
⊢
(∀𝑣 𝑣 = 𝑢 → ∀𝑢 𝑢 = 𝑣) |
| 17 | 11, 15, 16 | 3syl 17 |
. . 3
⊢
(∀𝑓 𝑓 = 𝑦 → ∀𝑢 𝑢 = 𝑣) |
| 18 | | ax-8 1518 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝑢 = 𝑣 → 𝑤 = 𝑣)) |
| 19 | 18 | spimv 1825 |
. . 3
⊢
(∀𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣) |
| 20 | 5, 17, 19 | 3syl 17 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣) |
| 21 | 1, 20 | alrimih 1483 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) |