Step | Hyp | Ref
| Expression |
1 | | hbae 1711 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
2 | | hbae 1711 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑓∀𝑥 𝑥 = 𝑦) |
3 | | ax-8 1497 |
. . . . 5
⊢ (𝑥 = 𝑓 → (𝑥 = 𝑦 → 𝑓 = 𝑦)) |
4 | 3 | spimv 1804 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑓 = 𝑦) |
5 | 2, 4 | alrimih 1462 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑓 𝑓 = 𝑦) |
6 | | ax-8 1497 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑓 → 𝑢 = 𝑓)) |
7 | | equcomi 1697 |
. . . . . . . 8
⊢ (𝑢 = 𝑓 → 𝑓 = 𝑢) |
8 | 6, 7 | syl6 33 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑓 → 𝑓 = 𝑢)) |
9 | 8 | spimv 1804 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑓 → 𝑓 = 𝑢) |
10 | 9 | alequcoms 1509 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑦 → 𝑓 = 𝑢) |
11 | 10 | a5i 1536 |
. . . 4
⊢
(∀𝑓 𝑓 = 𝑦 → ∀𝑓 𝑓 = 𝑢) |
12 | | hbae 1711 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑢 → ∀𝑣∀𝑓 𝑓 = 𝑢) |
13 | | ax-8 1497 |
. . . . . 6
⊢ (𝑓 = 𝑣 → (𝑓 = 𝑢 → 𝑣 = 𝑢)) |
14 | 13 | spimv 1804 |
. . . . 5
⊢
(∀𝑓 𝑓 = 𝑢 → 𝑣 = 𝑢) |
15 | 12, 14 | alrimih 1462 |
. . . 4
⊢
(∀𝑓 𝑓 = 𝑢 → ∀𝑣 𝑣 = 𝑢) |
16 | | alequcom 1508 |
. . . 4
⊢
(∀𝑣 𝑣 = 𝑢 → ∀𝑢 𝑢 = 𝑣) |
17 | 11, 15, 16 | 3syl 17 |
. . 3
⊢
(∀𝑓 𝑓 = 𝑦 → ∀𝑢 𝑢 = 𝑣) |
18 | | ax-8 1497 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝑢 = 𝑣 → 𝑤 = 𝑣)) |
19 | 18 | spimv 1804 |
. . 3
⊢
(∀𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣) |
20 | 5, 17, 19 | 3syl 17 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣) |
21 | 1, 20 | alrimih 1462 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) |