ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbae GIF version

Theorem hbae 1706
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
hbae (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)

Proof of Theorem hbae
StepHypRef Expression
1 ax12or 1496 . . . 4 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 ax10o 1703 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
32alequcoms 1504 . . . . 5 (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
4 ax10o 1703 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
54pm2.43i 49 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
6 ax10o 1703 . . . . . . . 8 (∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
75, 6syl5 32 . . . . . . 7 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
87alequcoms 1504 . . . . . 6 (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
9 ax-4 1498 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
109imim1i 60 . . . . . . 7 ((𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
1110sps 1525 . . . . . 6 (∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
128, 11jaoi 706 . . . . 5 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
133, 12jaoi 706 . . . 4 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
141, 13ax-mp 5 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
1514a5i 1531 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑧 𝑥 = 𝑦)
16 ax-7 1436 . 2 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
1715, 16syl 14 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wal 1341   = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfae  1707  hbaes  1708  hbnae  1709  dral1  1718  dral2  1719  drex2  1720  drex1  1786  aev  1800  sbcomxyyz  1960  exists1  2110
  Copyright terms: Public domain W3C validator