ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drex1 GIF version

Theorem drex1 1791
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
Hypothesis
Ref Expression
drex1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex1 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))

Proof of Theorem drex1
StepHypRef Expression
1 hbae 1711 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑥 𝑥 = 𝑦)
2 drex1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
3 ax-4 1503 . . . . . 6 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
43biantrurd 303 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜓 ↔ (𝑥 = 𝑦𝜓)))
52, 4bitr2d 188 . . . 4 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦𝜓) ↔ 𝜑))
61, 5exbidh 1607 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ ∃𝑥𝜑))
7 ax11e 1789 . . . 4 (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜓) → ∃𝑦𝜓))
87sps 1530 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜓) → ∃𝑦𝜓))
96, 8sylbird 169 . 2 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∃𝑦𝜓))
10 hbae 1711 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
11 equcomi 1697 . . . . . . 7 (𝑥 = 𝑦𝑦 = 𝑥)
1211sps 1530 . . . . . 6 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑥)
1312biantrurd 303 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ (𝑦 = 𝑥𝜑)))
1413, 2bitr3d 189 . . . 4 (∀𝑥 𝑥 = 𝑦 → ((𝑦 = 𝑥𝜑) ↔ 𝜓))
1510, 14exbidh 1607 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑦 = 𝑥𝜑) ↔ ∃𝑦𝜓))
16 ax11e 1789 . . . . 5 (𝑦 = 𝑥 → (∃𝑦(𝑦 = 𝑥𝜑) → ∃𝑥𝜑))
1716sps 1530 . . . 4 (∀𝑦 𝑦 = 𝑥 → (∃𝑦(𝑦 = 𝑥𝜑) → ∃𝑥𝜑))
1817alequcoms 1509 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑦 = 𝑥𝜑) → ∃𝑥𝜑))
1915, 18sylbird 169 . 2 (∀𝑥 𝑥 = 𝑦 → (∃𝑦𝜓 → ∃𝑥𝜑))
209, 19impbid 128 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  drsb1  1792  exdistrfor  1793  copsexg  4229
  Copyright terms: Public domain W3C validator