Proof of Theorem drex1
Step | Hyp | Ref
| Expression |
1 | | hbae 1706 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) |
2 | | drex1.1 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
3 | | ax-4 1498 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
4 | 3 | biantrurd 303 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜓 ↔ (𝑥 = 𝑦 ∧ 𝜓))) |
5 | 2, 4 | bitr2d 188 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜑)) |
6 | 1, 5 | exbidh 1602 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ ∃𝑥𝜑)) |
7 | | ax11e 1784 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) |
8 | 7 | sps 1525 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) |
9 | 6, 8 | sylbird 169 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∃𝑦𝜓)) |
10 | | hbae 1706 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) |
11 | | equcomi 1692 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
12 | 11 | sps 1525 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑦 = 𝑥) |
13 | 12 | biantrurd 303 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ (𝑦 = 𝑥 ∧ 𝜑))) |
14 | 13, 2 | bitr3d 189 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑦 = 𝑥 ∧ 𝜑) ↔ 𝜓)) |
15 | 10, 14 | exbidh 1602 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜑) ↔ ∃𝑦𝜓)) |
16 | | ax11e 1784 |
. . . . 5
⊢ (𝑦 = 𝑥 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜑) → ∃𝑥𝜑)) |
17 | 16 | sps 1525 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜑) → ∃𝑥𝜑)) |
18 | 17 | alequcoms 1504 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜑) → ∃𝑥𝜑)) |
19 | 15, 18 | sylbird 169 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦𝜓 → ∃𝑥𝜑)) |
20 | 9, 19 | impbid 128 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |