ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dral1 GIF version

Theorem dral1 1665
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Proof of Theorem dral1
StepHypRef Expression
1 hbae 1653 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑥 𝑥 = 𝑦)
2 dral1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 142 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
41, 3alimdh 1401 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑥𝜓))
5 ax10o 1650 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
64, 5syld 44 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜓))
7 hbae 1653 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
82biimprd 156 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜓𝜑))
97, 8alimdh 1401 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑦𝜑))
10 ax10o 1650 . . . 4 (∀𝑦 𝑦 = 𝑥 → (∀𝑦𝜑 → ∀𝑥𝜑))
1110alequcoms 1454 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
129, 11syld 44 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜑))
136, 12impbid 127 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  drnf1  1668  equveli  1689  a16g  1792
  Copyright terms: Public domain W3C validator