ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dral1 GIF version

Theorem dral1 1728
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Proof of Theorem dral1
StepHypRef Expression
1 hbae 1716 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑥 𝑥 = 𝑦)
2 dral1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 144 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
41, 3alimdh 1465 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑥𝜓))
5 ax10o 1713 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
64, 5syld 45 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜓))
7 hbae 1716 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
82biimprd 158 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜓𝜑))
97, 8alimdh 1465 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑦𝜑))
10 ax10o 1713 . . . 4 (∀𝑦 𝑦 = 𝑥 → (∀𝑦𝜑 → ∀𝑥𝜑))
1110alequcoms 1514 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
129, 11syld 45 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜑))
136, 12impbid 129 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  drnf1  1731  equveli  1757  a16g  1862
  Copyright terms: Public domain W3C validator