| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alimd | GIF version | ||
| Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alimd.1 | ⊢ Ⅎ𝑥𝜑 |
| alimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimd | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alimd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | alimdh 1481 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: alrimdd 1623 moim 2109 ralimdaa 2563 setindft 15611 |
| Copyright terms: Public domain | W3C validator |