ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alimd GIF version

Theorem alimd 1509
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
alimd.1 𝑥𝜑
alimd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alimd (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))

Proof of Theorem alimd
StepHypRef Expression
1 alimd.1 . . 3 𝑥𝜑
21nfri 1507 . 2 (𝜑 → ∀𝑥𝜑)
3 alimd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3alimdh 1455 1 (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  alrimdd  1597  moim  2078  ralimdaa  2532  setindft  13847
  Copyright terms: Public domain W3C validator