| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1493 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1471 ax-gen 1473 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: axc4i 1566 19.32r 1704 cbv3 1766 sbbid 1870 sbalyz 2028 dvelimdf 2045 dvelimor 2047 nf5d 2054 abbid 2324 nfcd 2345 nfabdw 2369 ralrimi 2579 r19.32r 2654 ceqsalg 2805 ceqsex 2815 vtocldf 2829 elrab3t 2935 morex 2964 sbciedf 3041 csbiebt 3141 csbiedf 3142 ssrd 3206 invdisj 4052 ssopab2b 4341 eusv2nf 4521 sniota 5281 imadif 5373 funimaexglem 5376 eusvobj1 5954 ssoprab2b 6025 ovmpodxf 6094 nninfinf 10625 |
| Copyright terms: Public domain | W3C validator |