![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1530 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1480 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1458 ax-gen 1460 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: axc4i 1553 19.32r 1691 cbv3 1753 sbbid 1857 sbalyz 2015 dvelimdf 2032 dvelimor 2034 nf5d 2041 abbid 2310 nfcd 2331 nfabdw 2355 ralrimi 2565 r19.32r 2640 ceqsalg 2788 ceqsex 2798 vtocldf 2811 elrab3t 2915 morex 2944 sbciedf 3021 csbiebt 3120 csbiedf 3121 ssrd 3184 invdisj 4023 ssopab2b 4307 eusv2nf 4487 sniota 5245 imadif 5334 funimaexglem 5337 eusvobj1 5905 ssoprab2b 5975 ovmpodxf 6044 nninfinf 10514 |
Copyright terms: Public domain | W3C validator |