Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1507 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1457 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: axc4i 1530 19.32r 1668 cbv3 1730 sbbid 1834 sbalyz 1987 dvelimdf 2004 dvelimor 2006 nf5d 2013 abbid 2283 nfcd 2303 nfabdw 2327 ralrimi 2537 r19.32r 2612 ceqsalg 2754 ceqsex 2764 vtocldf 2777 elrab3t 2881 morex 2910 sbciedf 2986 csbiebt 3084 csbiedf 3085 ssrd 3147 rgenm 3511 invdisj 3976 ssopab2b 4254 eusv2nf 4434 sniota 5180 imadif 5268 funimaexglem 5271 eusvobj1 5829 ssoprab2b 5899 ovmpodxf 5967 |
Copyright terms: Public domain | W3C validator |