| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1565 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1515 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1493 ax-gen 1495 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: axc4i 1588 19.32r 1726 cbv3 1788 sbbid 1892 sbalyz 2050 dvelimdf 2067 dvelimor 2069 nf5d 2076 abbid 2346 nfcd 2367 nfabdw 2391 ralrimi 2601 r19.32r 2677 ceqsalg 2828 ceqsex 2838 vtocldf 2852 elrab3t 2958 morex 2987 sbciedf 3064 csbiebt 3164 csbiedf 3165 ssrd 3229 invdisj 4075 ssopab2b 4364 eusv2nf 4546 sniota 5308 imadif 5400 funimaexglem 5403 eusvobj1 5987 ssoprab2b 6060 ovmpodxf 6129 nninfinf 10660 |
| Copyright terms: Public domain | W3C validator |