![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moim | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1552 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
2 | ax-4 1521 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
3 | spsbim 1854 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
4 | 2, 3 | anim12d 335 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) |
5 | 4 | imim1d 75 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
6 | 5 | alimdv 1890 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
7 | 1, 6 | alimd 1532 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
8 | ax-17 1537 | . . 3 ⊢ (𝜓 → ∀𝑦𝜓) | |
9 | 8 | mo3h 2095 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
10 | ax-17 1537 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
11 | 10 | mo3h 2095 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | 3imtr4g 205 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 [wsb 1773 ∃*wmo 2043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 |
This theorem is referenced by: moimi 2107 euimmo 2109 moexexdc 2126 euexex 2127 rmoim 2961 rmoimi2 2963 ssrmof 3242 disjss1 4012 reusv1 4489 funmo 5269 uptx 14442 |
Copyright terms: Public domain | W3C validator |