ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim GIF version

Theorem moim 2122
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem moim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1567 . . 3 𝑥𝑥(𝜑𝜓)
2 ax-4 1536 . . . . . 6 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
3 spsbim 1869 . . . . . 6 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
42, 3anim12d 335 . . . . 5 (∀𝑥(𝜑𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
54imim1d 75 . . . 4 (∀𝑥(𝜑𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
65alimdv 1905 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
71, 6alimd 1547 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 ax-17 1552 . . 3 (𝜓 → ∀𝑦𝜓)
98mo3h 2111 . 2 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
10 ax-17 1552 . . 3 (𝜑 → ∀𝑦𝜑)
1110mo3h 2111 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
127, 9, 113imtr4g 205 1 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1373  [wsb 1788  ∃*wmo 2058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061
This theorem is referenced by:  moimi  2123  euimmo  2125  moexexdc  2142  euexex  2143  rmoim  2984  rmoimi2  2986  ssrmof  3267  disjss1  4044  reusv1  4526  funmo  5309  uptx  14913
  Copyright terms: Public domain W3C validator