Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moim | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1529 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
2 | ax-4 1498 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
3 | spsbim 1831 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
4 | 2, 3 | anim12d 333 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) |
5 | 4 | imim1d 75 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
6 | 5 | alimdv 1867 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
7 | 1, 6 | alimd 1509 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
8 | ax-17 1514 | . . 3 ⊢ (𝜓 → ∀𝑦𝜓) | |
9 | 8 | mo3h 2067 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
10 | ax-17 1514 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
11 | 10 | mo3h 2067 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | 3imtr4g 204 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 [wsb 1750 ∃*wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: moimi 2079 euimmo 2081 moexexdc 2098 euexex 2099 rmoim 2927 rmoimi2 2929 ssrmof 3205 disjss1 3965 reusv1 4436 funmo 5203 uptx 12914 |
Copyright terms: Public domain | W3C validator |