| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moim | GIF version | ||
| Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
| Ref | Expression |
|---|---|
| moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1555 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
| 2 | ax-4 1524 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 3 | spsbim 1857 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 4 | 2, 3 | anim12d 335 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) |
| 5 | 4 | imim1d 75 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 6 | 5 | alimdv 1893 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 7 | 1, 6 | alimd 1535 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 8 | ax-17 1540 | . . 3 ⊢ (𝜓 → ∀𝑦𝜓) | |
| 9 | 8 | mo3h 2098 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
| 10 | ax-17 1540 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 11 | 10 | mo3h 2098 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 12 | 7, 9, 11 | 3imtr4g 205 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 [wsb 1776 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: moimi 2110 euimmo 2112 moexexdc 2129 euexex 2130 rmoim 2965 rmoimi2 2967 ssrmof 3246 disjss1 4016 reusv1 4493 funmo 5273 uptx 14510 |
| Copyright terms: Public domain | W3C validator |