ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim GIF version

Theorem moim 2090
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem moim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1541 . . 3 𝑥𝑥(𝜑𝜓)
2 ax-4 1510 . . . . . 6 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
3 spsbim 1843 . . . . . 6 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
42, 3anim12d 335 . . . . 5 (∀𝑥(𝜑𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
54imim1d 75 . . . 4 (∀𝑥(𝜑𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
65alimdv 1879 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
71, 6alimd 1521 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 ax-17 1526 . . 3 (𝜓 → ∀𝑦𝜓)
98mo3h 2079 . 2 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
10 ax-17 1526 . . 3 (𝜑 → ∀𝑦𝜑)
1110mo3h 2079 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
127, 9, 113imtr4g 205 1 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351  [wsb 1762  ∃*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  moimi  2091  euimmo  2093  moexexdc  2110  euexex  2111  rmoim  2940  rmoimi2  2942  ssrmof  3220  disjss1  3988  reusv1  4460  funmo  5233  uptx  13859
  Copyright terms: Public domain W3C validator