ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim GIF version

Theorem moim 2083
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem moim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1534 . . 3 𝑥𝑥(𝜑𝜓)
2 ax-4 1503 . . . . . 6 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
3 spsbim 1836 . . . . . 6 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
42, 3anim12d 333 . . . . 5 (∀𝑥(𝜑𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
54imim1d 75 . . . 4 (∀𝑥(𝜑𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
65alimdv 1872 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
71, 6alimd 1514 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 ax-17 1519 . . 3 (𝜓 → ∀𝑦𝜓)
98mo3h 2072 . 2 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
10 ax-17 1519 . . 3 (𝜑 → ∀𝑦𝜑)
1110mo3h 2072 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
127, 9, 113imtr4g 204 1 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346  [wsb 1755  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  moimi  2084  euimmo  2086  moexexdc  2103  euexex  2104  rmoim  2931  rmoimi2  2933  ssrmof  3210  disjss1  3972  reusv1  4443  funmo  5213  uptx  13068
  Copyright terms: Public domain W3C validator