| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrd | GIF version | ||
| Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfr 1532 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfan1 1578 nfim1 1585 alrimdd 1623 spimed 1754 cbv2 1763 nfald 1774 sbied 1802 cbvexd 1942 sbcomxyyz 1991 hbsbd 2001 dvelimALT 2029 dvelimfv 2030 hbeud 2067 abidnf 2932 eusvnfb 4489 |
| Copyright terms: Public domain | W3C validator |