ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrd GIF version

Theorem nfrd 1531
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfrd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrd
StepHypRef Expression
1 nfrd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfr 1529 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 14 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nfan1  1575  nfim1  1582  alrimdd  1620  spimed  1751  cbv2  1760  nfald  1771  sbied  1799  cbvexd  1939  sbcomxyyz  1988  hbsbd  1998  dvelimALT  2026  dvelimfv  2027  hbeud  2064  abidnf  2928  eusvnfb  4485
  Copyright terms: Public domain W3C validator