Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrd | GIF version |
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfr 1506 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfan1 1552 nfim1 1559 alrimdd 1597 spimed 1728 cbv2 1737 nfald 1748 sbied 1776 cbvexd 1915 sbcomxyyz 1960 hbsbd 1970 dvelimALT 1998 dvelimfv 1999 hbeud 2036 abidnf 2894 eusvnfb 4432 |
Copyright terms: Public domain | W3C validator |