ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrd GIF version

Theorem nfrd 1566
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfrd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrd
StepHypRef Expression
1 nfrd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfr 1564 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 14 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1556
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nfan1  1610  nfim1  1617  alrimdd  1655  spimed  1786  cbv2  1795  nfald  1806  sbied  1834  cbvexd  1974  sbcomxyyz  2023  hbsbd  2033  dvelimALT  2061  dvelimfv  2062  hbeud  2099  abidnf  2971  eusvnfb  4544
  Copyright terms: Public domain W3C validator