![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrd | GIF version |
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfr 1518 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfan1 1564 nfim1 1571 alrimdd 1609 spimed 1740 cbv2 1749 nfald 1760 sbied 1788 cbvexd 1927 sbcomxyyz 1972 hbsbd 1982 dvelimALT 2010 dvelimfv 2011 hbeud 2048 abidnf 2907 eusvnfb 4456 |
Copyright terms: Public domain | W3C validator |