| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrd | GIF version | ||
| Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfr 1564 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfan1 1610 nfim1 1617 alrimdd 1655 spimed 1786 cbv2 1795 nfald 1806 sbied 1834 cbvexd 1974 sbcomxyyz 2023 hbsbd 2033 dvelimALT 2061 dvelimfv 2062 hbeud 2099 abidnf 2971 eusvnfb 4544 |
| Copyright terms: Public domain | W3C validator |