ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrd GIF version

Theorem nfrd 1508
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfrd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrd
StepHypRef Expression
1 nfrd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfr 1506 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 14 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfan1  1552  nfim1  1559  alrimdd  1597  spimed  1728  cbv2  1737  nfald  1748  sbied  1776  cbvexd  1915  sbcomxyyz  1960  hbsbd  1970  dvelimALT  1998  dvelimfv  1999  hbeud  2036  abidnf  2894  eusvnfb  4432
  Copyright terms: Public domain W3C validator