![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrd | GIF version |
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfr 1529 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nfan1 1575 nfim1 1582 alrimdd 1620 spimed 1751 cbv2 1760 nfald 1771 sbied 1799 cbvexd 1939 sbcomxyyz 1988 hbsbd 1998 dvelimALT 2026 dvelimfv 2027 hbeud 2064 abidnf 2928 eusvnfb 4485 |
Copyright terms: Public domain | W3C validator |