ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrd GIF version

Theorem nfrd 1518
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfrd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrd
StepHypRef Expression
1 nfrd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfr 1516 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 14 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wnf 1458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1508
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  nfan1  1562  nfim1  1569  alrimdd  1607  spimed  1738  cbv2  1747  nfald  1758  sbied  1786  cbvexd  1925  sbcomxyyz  1970  hbsbd  1980  dvelimALT  2008  dvelimfv  2009  hbeud  2046  abidnf  2903  eusvnfb  4448
  Copyright terms: Public domain W3C validator