ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrd GIF version

Theorem nfrd 1544
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfrd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrd
StepHypRef Expression
1 nfrd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfr 1542 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 14 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfan1  1588  nfim1  1595  alrimdd  1633  spimed  1764  cbv2  1773  nfald  1784  sbied  1812  cbvexd  1952  sbcomxyyz  2001  hbsbd  2011  dvelimALT  2039  dvelimfv  2040  hbeud  2077  abidnf  2945  eusvnfb  4509
  Copyright terms: Public domain W3C validator