Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdaa | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
ralimdaa.1 | ⊢ Ⅎ𝑥𝜑 |
ralimdaa.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdaa | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdaa.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 2 | ex 114 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
4 | 3 | a2d 26 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜒))) |
5 | 1, 4 | alimd 1509 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
6 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
7 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
8 | 5, 6, 7 | 3imtr4g 204 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: ralimdva 2533 mkvprop 7122 isomninnlem 13909 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |