| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindft | GIF version | ||
| Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindft | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1587 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑦𝜑 | |
| 3 | nfnf1 1590 | . . . . . . 7 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
| 4 | 3 | nfal 1622 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
| 5 | nfsbt 2027 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦[𝑧 / 𝑥]𝜑) | |
| 6 | nfv 1574 | . . . . . . 7 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 7 | 6 | a1i 9 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 8 | sbequ 1886 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 9 | 8 | a1i 9 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
| 10 | 2, 4, 5, 7, 9 | cbvrald 16176 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑)) |
| 11 | 10 | biimpd 144 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑)) |
| 12 | 11 | imim1d 75 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑))) |
| 13 | 1, 12 | alimd 1567 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑))) |
| 14 | ax-setind 4629 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) | |
| 15 | 13, 14 | syl6 33 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 Ⅎwnf 1506 [wsb 1808 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-ral 2513 |
| This theorem is referenced by: setindf 16353 |
| Copyright terms: Public domain | W3C validator |