Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  setindft GIF version

Theorem setindft 16352
Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
Assertion
Ref Expression
setindft (∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem setindft
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1587 . . 3 𝑥𝑥𝑦𝜑
2 nfv 1574 . . . . . 6 𝑧𝑥𝑦𝜑
3 nfnf1 1590 . . . . . . 7 𝑦𝑦𝜑
43nfal 1622 . . . . . 6 𝑦𝑥𝑦𝜑
5 nfsbt 2027 . . . . . 6 (∀𝑥𝑦𝜑 → Ⅎ𝑦[𝑧 / 𝑥]𝜑)
6 nfv 1574 . . . . . . 7 𝑧[𝑦 / 𝑥]𝜑
76a1i 9 . . . . . 6 (∀𝑥𝑦𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
8 sbequ 1886 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
98a1i 9 . . . . . 6 (∀𝑥𝑦𝜑 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)))
102, 4, 5, 7, 9cbvrald 16176 . . . . 5 (∀𝑥𝑦𝜑 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 [𝑦 / 𝑥]𝜑))
1110biimpd 144 . . . 4 (∀𝑥𝑦𝜑 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑦𝑥 [𝑦 / 𝑥]𝜑))
1211imim1d 75 . . 3 (∀𝑥𝑦𝜑 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑𝜑)))
131, 12alimd 1567 . 2 (∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥(∀𝑧𝑥 [𝑧 / 𝑥]𝜑𝜑)))
14 ax-setind 4629 . 2 (∀𝑥(∀𝑧𝑥 [𝑧 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
1513, 14syl6 33 1 (∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wnf 1506  [wsb 1808  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-ral 2513
This theorem is referenced by:  setindf  16353
  Copyright terms: Public domain W3C validator