| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfri | GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfri.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfr 1564 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: alimd 1567 alrimi 1568 nfd 1569 nfrimi 1571 nfbidf 1585 19.3 1600 nfan1 1610 nfim1 1617 nfor 1620 nfimd 1631 exlimi 1640 exlimd 1643 eximd 1658 albid 1661 exbid 1662 nfex 1683 19.9 1690 nf2 1714 nf3 1715 spim 1784 cbv2 1795 cbvexv1 1798 cbval 1800 cbvex 1802 nfald 1806 nfexd 1807 sbf 1823 nfs1f 1826 sbied 1834 sbie 1837 nfs1 1855 equs5or 1876 sb4or 1879 sbid2 1896 cbvexd 1974 hbsb 2000 sbco2yz 2014 sbco2 2016 sbco3v 2020 sbcomxyyz 2023 nfsbd 2028 hbeu 2098 mo23 2119 mor 2120 eu2 2122 eu3 2124 mo2r 2130 mo3 2132 mo2dc 2133 moexexdc 2162 nfsab 2221 nfcrii 2365 bj-sbime 16095 |
| Copyright terms: Public domain | W3C validator |