Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfri | GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfri.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfri | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfri.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfr 1506 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: alimd 1509 alrimi 1510 nfd 1511 nfrimi 1513 nfbidf 1527 19.3 1542 nfan1 1552 nfim1 1559 nfor 1562 nfimd 1573 exlimi 1582 exlimd 1585 eximd 1600 albid 1603 exbid 1604 nfex 1625 19.9 1632 nf2 1656 nf3 1657 spim 1726 cbv2 1737 cbvexv1 1740 cbval 1742 cbvex 1744 nfald 1748 nfexd 1749 sbf 1765 nfs1f 1768 sbied 1776 sbie 1779 nfs1 1797 equs5or 1818 sb4or 1821 sbid2 1838 cbvexd 1915 hbsb 1937 sbco2yz 1951 sbco2 1953 sbco3v 1957 sbcomxyyz 1960 nfsbd 1965 hbeu 2035 mo23 2055 mor 2056 eu2 2058 eu3 2060 mo2r 2066 mo3 2068 mo2dc 2069 moexexdc 2098 nfsab 2157 nfcrii 2301 bj-sbime 13654 |
Copyright terms: Public domain | W3C validator |