| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfri | GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfri.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfr 1542 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: alimd 1545 alrimi 1546 nfd 1547 nfrimi 1549 nfbidf 1563 19.3 1578 nfan1 1588 nfim1 1595 nfor 1598 nfimd 1609 exlimi 1618 exlimd 1621 eximd 1636 albid 1639 exbid 1640 nfex 1661 19.9 1668 nf2 1692 nf3 1693 spim 1762 cbv2 1773 cbvexv1 1776 cbval 1778 cbvex 1780 nfald 1784 nfexd 1785 sbf 1801 nfs1f 1804 sbied 1812 sbie 1815 nfs1 1833 equs5or 1854 sb4or 1857 sbid2 1874 cbvexd 1952 hbsb 1978 sbco2yz 1992 sbco2 1994 sbco3v 1998 sbcomxyyz 2001 nfsbd 2006 hbeu 2076 mo23 2096 mor 2097 eu2 2099 eu3 2101 mo2r 2107 mo3 2109 mo2dc 2110 moexexdc 2139 nfsab 2198 nfcrii 2342 bj-sbime 15848 |
| Copyright terms: Public domain | W3C validator |