| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfri | GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfri.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfr 1540 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: alimd 1543 alrimi 1544 nfd 1545 nfrimi 1547 nfbidf 1561 19.3 1576 nfan1 1586 nfim1 1593 nfor 1596 nfimd 1607 exlimi 1616 exlimd 1619 eximd 1634 albid 1637 exbid 1638 nfex 1659 19.9 1666 nf2 1690 nf3 1691 spim 1760 cbv2 1771 cbvexv1 1774 cbval 1776 cbvex 1778 nfald 1782 nfexd 1783 sbf 1799 nfs1f 1802 sbied 1810 sbie 1813 nfs1 1831 equs5or 1852 sb4or 1855 sbid2 1872 cbvexd 1950 hbsb 1976 sbco2yz 1990 sbco2 1992 sbco3v 1996 sbcomxyyz 1999 nfsbd 2004 hbeu 2074 mo23 2094 mor 2095 eu2 2097 eu3 2099 mo2r 2105 mo3 2107 mo2dc 2108 moexexdc 2137 nfsab 2196 nfcrii 2340 bj-sbime 15573 |
| Copyright terms: Public domain | W3C validator |