![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfri | GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfri.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfri | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfri.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfr 1481 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1312 Ⅎwnf 1419 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-4 1470 |
This theorem depends on definitions: df-bi 116 df-nf 1420 |
This theorem is referenced by: alimd 1484 alrimi 1485 nfd 1486 nfrimi 1488 nfbidf 1502 19.3 1516 nfan1 1526 nfim1 1533 nfor 1536 nfal 1538 nfimd 1547 exlimi 1556 exlimd 1559 eximd 1574 albid 1577 exbid 1578 nfex 1599 19.9 1606 nf2 1629 nf3 1630 spim 1699 cbv2 1708 cbval 1710 cbvex 1712 nfald 1716 nfexd 1717 sbf 1733 nfs1f 1736 sbied 1744 sbie 1747 nfs1 1763 equs5or 1784 sb4or 1787 sbid2 1804 cbvexd 1877 hbsb 1898 sbco2yz 1912 sbco2 1914 sbco3v 1918 sbcomxyyz 1921 nfsbd 1926 hbeu 1996 mo23 2016 mor 2017 eu2 2019 eu3 2021 mo2r 2027 mo3 2029 mo2dc 2030 moexexdc 2059 nfsab 2107 nfcrii 2248 bj-sbime 12673 |
Copyright terms: Public domain | W3C validator |