ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcunqu GIF version

Theorem prcunqu 7545
Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prcunqu ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))

Proof of Theorem prcunqu
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7425 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4711 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simprd 114 . . . 4 (𝐶 <Q 𝐵𝐵Q)
43adantl 277 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵Q)
5 breq2 4033 . . . . . . 7 (𝑏 = 𝐵 → (𝐶 <Q 𝑏𝐶 <Q 𝐵))
6 eleq1 2256 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑈𝐵𝑈))
75, 6imbi12d 234 . . . . . 6 (𝑏 = 𝐵 → ((𝐶 <Q 𝑏𝑏𝑈) ↔ (𝐶 <Q 𝐵𝐵𝑈)))
87imbi2d 230 . . . . 5 (𝑏 = 𝐵 → (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝑏𝑏𝑈)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))))
91brel 4711 . . . . . . . 8 (𝐶 <Q 𝑏 → (𝐶Q𝑏Q))
10 an42 587 . . . . . . . . 9 (((𝐶Q𝑏Q) ∧ (𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐶Q𝐶𝑈) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑏Q)))
11 breq1 4032 . . . . . . . . . . . . . . . 16 (𝑐 = 𝐶 → (𝑐 <Q 𝑏𝐶 <Q 𝑏))
12 eleq1 2256 . . . . . . . . . . . . . . . 16 (𝑐 = 𝐶 → (𝑐𝑈𝐶𝑈))
1311, 12anbi12d 473 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → ((𝑐 <Q 𝑏𝑐𝑈) ↔ (𝐶 <Q 𝑏𝐶𝑈)))
1413rspcev 2864 . . . . . . . . . . . . . 14 ((𝐶Q ∧ (𝐶 <Q 𝑏𝐶𝑈)) → ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))
15 elinp 7534 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
16 simpr1r 1057 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1715, 16sylbi 121 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1817r19.21bi 2582 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1914, 18syl5ibrcom 157 . . . . . . . . . . . . 13 ((𝐶Q ∧ (𝐶 <Q 𝑏𝐶𝑈)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
20193impb 1201 . . . . . . . . . . . 12 ((𝐶Q𝐶 <Q 𝑏𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
21203com12 1209 . . . . . . . . . . 11 ((𝐶 <Q 𝑏𝐶Q𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
22213expib 1208 . . . . . . . . . 10 (𝐶 <Q 𝑏 → ((𝐶Q𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈)))
2322impd 254 . . . . . . . . 9 (𝐶 <Q 𝑏 → (((𝐶Q𝐶𝑈) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑏Q)) → 𝑏𝑈))
2410, 23biimtrid 152 . . . . . . . 8 (𝐶 <Q 𝑏 → (((𝐶Q𝑏Q) ∧ (𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑏𝑈))
259, 24mpand 429 . . . . . . 7 (𝐶 <Q 𝑏 → ((𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑏𝑈))
2625com12 30 . . . . . 6 ((𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝐶 <Q 𝑏𝑏𝑈))
2726ancoms 268 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝑏𝑏𝑈))
288, 27vtoclg 2820 . . . 4 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈)))
2928impd 254 . . 3 (𝐵Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵𝑈))
304, 29mpcom 36 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵𝑈)
3130ex 115 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  cop 3621   class class class wbr 4029  Qcnq 7340   <Q cltq 7345  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-qs 6593  df-ni 7364  df-nqqs 7408  df-ltnqqs 7413  df-inp 7526
This theorem is referenced by:  prarloc  7563  prarloc2  7564  addnqprulem  7588  nqpru  7612  prmuloc2  7627  mulnqpru  7629  distrlem4pru  7645  1idpru  7651  ltexprlemm  7660  ltexprlemupu  7664  ltexprlemrl  7670  ltexprlemfu  7671  ltexprlemru  7672  aptiprlemu  7700  suplocexprlemdisj  7780  suplocexprlemub  7783
  Copyright terms: Public domain W3C validator