ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcunqu GIF version

Theorem prcunqu 7484
Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prcunqu ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))

Proof of Theorem prcunqu
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7364 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4679 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simprd 114 . . . 4 (𝐶 <Q 𝐵𝐵Q)
43adantl 277 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵Q)
5 breq2 4008 . . . . . . 7 (𝑏 = 𝐵 → (𝐶 <Q 𝑏𝐶 <Q 𝐵))
6 eleq1 2240 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑈𝐵𝑈))
75, 6imbi12d 234 . . . . . 6 (𝑏 = 𝐵 → ((𝐶 <Q 𝑏𝑏𝑈) ↔ (𝐶 <Q 𝐵𝐵𝑈)))
87imbi2d 230 . . . . 5 (𝑏 = 𝐵 → (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝑏𝑏𝑈)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))))
91brel 4679 . . . . . . . 8 (𝐶 <Q 𝑏 → (𝐶Q𝑏Q))
10 an42 587 . . . . . . . . 9 (((𝐶Q𝑏Q) ∧ (𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐶Q𝐶𝑈) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑏Q)))
11 breq1 4007 . . . . . . . . . . . . . . . 16 (𝑐 = 𝐶 → (𝑐 <Q 𝑏𝐶 <Q 𝑏))
12 eleq1 2240 . . . . . . . . . . . . . . . 16 (𝑐 = 𝐶 → (𝑐𝑈𝐶𝑈))
1311, 12anbi12d 473 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → ((𝑐 <Q 𝑏𝑐𝑈) ↔ (𝐶 <Q 𝑏𝐶𝑈)))
1413rspcev 2842 . . . . . . . . . . . . . 14 ((𝐶Q ∧ (𝐶 <Q 𝑏𝐶𝑈)) → ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))
15 elinp 7473 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
16 simpr1r 1055 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1715, 16sylbi 121 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1817r19.21bi 2565 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈)))
1914, 18syl5ibrcom 157 . . . . . . . . . . . . 13 ((𝐶Q ∧ (𝐶 <Q 𝑏𝐶𝑈)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
20193impb 1199 . . . . . . . . . . . 12 ((𝐶Q𝐶 <Q 𝑏𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
21203com12 1207 . . . . . . . . . . 11 ((𝐶 <Q 𝑏𝐶Q𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈))
22213expib 1206 . . . . . . . . . 10 (𝐶 <Q 𝑏 → ((𝐶Q𝐶𝑈) → ((⟨𝐿, 𝑈⟩ ∈ P𝑏Q) → 𝑏𝑈)))
2322impd 254 . . . . . . . . 9 (𝐶 <Q 𝑏 → (((𝐶Q𝐶𝑈) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑏Q)) → 𝑏𝑈))
2410, 23biimtrid 152 . . . . . . . 8 (𝐶 <Q 𝑏 → (((𝐶Q𝑏Q) ∧ (𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑏𝑈))
259, 24mpand 429 . . . . . . 7 (𝐶 <Q 𝑏 → ((𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑏𝑈))
2625com12 30 . . . . . 6 ((𝐶𝑈 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝐶 <Q 𝑏𝑏𝑈))
2726ancoms 268 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝑏𝑏𝑈))
288, 27vtoclg 2798 . . . 4 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈)))
2928impd 254 . . 3 (𝐵Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵𝑈))
304, 29mpcom 36 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) ∧ 𝐶 <Q 𝐵) → 𝐵𝑈)
3130ex 115 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3130  cop 3596   class class class wbr 4004  Qcnq 7279   <Q cltq 7284  Pcnp 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-qs 6541  df-ni 7303  df-nqqs 7347  df-ltnqqs 7352  df-inp 7465
This theorem is referenced by:  prarloc  7502  prarloc2  7503  addnqprulem  7527  nqpru  7551  prmuloc2  7566  mulnqpru  7568  distrlem4pru  7584  1idpru  7590  ltexprlemm  7599  ltexprlemupu  7603  ltexprlemrl  7609  ltexprlemfu  7610  ltexprlemru  7611  aptiprlemu  7639  suplocexprlemdisj  7719  suplocexprlemub  7722
  Copyright terms: Public domain W3C validator