ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrnqg GIF version

Theorem distrnqg 7219
Description: Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
distrnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))

Proof of Theorem distrnqg
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7180 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7202 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
3 mulpipqqs 7205 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
4 mulclpi 7160 . . . . . . 7 ((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N)
5 simpl 108 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → 𝑦N)
6 mulclpi 7160 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)
75, 6jca 304 . . . . . . 7 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
84, 7anim12i 336 . . . . . 6 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
9 an12 551 . . . . . . 7 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
10 3anass 967 . . . . . . 7 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
119, 10bitr4i 186 . . . . . 6 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
128, 11sylib 121 . . . . 5 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
1312an4s 578 . . . 4 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
14 mulcanenqec 7218 . . . 4 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
1513, 14syl 14 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
163, 15eqtr4d 2176 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q )
17 mulpipqqs 7205 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
18 mulpipqqs 7205 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q )
19 addpipqqs 7202 . 2 ((((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N)) → ([⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q ) = [⟨(((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))), ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢))⟩] ~Q )
20 mulclpi 7160 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
21 mulclpi 7160 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
22 addclpi 7159 . . . . 5 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2320, 21, 22syl2an 287 . . . 4 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2423an42s 579 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
25 mulclpi 7160 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2625ad2ant2l 500 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2724, 26jca 304 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
28 mulclpi 7160 . . . 4 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
29 mulclpi 7160 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3028, 29anim12i 336 . . 3 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
3130an4s 578 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
32 mulclpi 7160 . . . 4 ((𝑥N𝑣N) → (𝑥 ·N 𝑣) ∈ N)
33 mulclpi 7160 . . . 4 ((𝑦N𝑢N) → (𝑦 ·N 𝑢) ∈ N)
3432, 33anim12i 336 . . 3 (((𝑥N𝑣N) ∧ (𝑦N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
3534an4s 578 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
36 an42 577 . . . . 5 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑧N𝑤N) ∧ (𝑣N𝑢N)))
3736anbi2i 453 . . . 4 (((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
38 3anass 967 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))))
39 3anass 967 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
4037, 38, 393bitr4i 211 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)))
41 mulclpi 7160 . . . . . 6 ((𝑦N𝑥N) → (𝑦 ·N 𝑥) ∈ N)
4241ancoms 266 . . . . 5 ((𝑥N𝑦N) → (𝑦 ·N 𝑥) ∈ N)
43 distrpig 7165 . . . . 5 (((𝑦 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
4442, 20, 21, 43syl3an 1259 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
45 simp1r 1007 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑦N)
46 simp1l 1006 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑥N)
47203ad2ant2 1004 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑧 ·N 𝑢) ∈ N)
48213ad2ant3 1005 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑣) ∈ N)
4947, 48, 22syl2anc 409 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
50 mulasspig 7164 . . . . 5 ((𝑦N𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
5145, 46, 49, 50syl3anc 1217 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
52 mulcompig 7163 . . . . . . . . 9 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
5352oveq1d 5797 . . . . . . . 8 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
5453adantr 274 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
55 simpll 519 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑥N)
56 simplr 520 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑦N)
57 simprl 521 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑧N)
58 mulcompig 7163 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
5958adantl 275 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
60 mulasspig 7164 . . . . . . . . 9 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6160adantl 275 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
62 simprr 522 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑢N)
63 mulclpi 7160 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6463adantl 275 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6555, 56, 57, 59, 61, 62, 64caov4d 5963 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
6654, 65eqtr3d 2175 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
67663adant3 1002 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
68 simplr 520 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑦N)
69 simpll 519 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑥N)
70 simprl 521 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑤N)
7158adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
7260adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
73 simprr 522 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑣N)
7463adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
7568, 69, 70, 71, 72, 73, 74caov4d 5963 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
76753adant2 1001 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
7767, 76oveq12d 5800 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7844, 51, 773eqtr3d 2181 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7940, 78sylbir 134 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
80703adant2 1001 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑤N)
81623adant3 1002 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑢N)
8280, 81, 25syl2anc 409 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
83 mulasspig 7164 . . . . 5 ((𝑦N𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8445, 45, 82, 83syl3anc 1217 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8558adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
8660adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
8763adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
8845, 45, 80, 85, 86, 81, 87caov4d 5963 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
8984, 88eqtr3d 2175 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
9040, 89sylbir 134 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
911, 2, 16, 17, 18, 19, 27, 31, 35, 79, 90ecovidi 6549 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  cop 3535  (class class class)co 5782  [cec 6435  Ncnpi 7104   +N cpli 7105   ·N cmi 7106   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114   ·Q cmq 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182
This theorem is referenced by:  ltaddnq  7239  halfnqq  7242  addnqprl  7361  addnqpru  7362  prmuloclemcalc  7397  distrlem1prl  7414  distrlem1pru  7415  distrlem4prl  7416  distrlem4pru  7417
  Copyright terms: Public domain W3C validator