ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrnqg GIF version

Theorem distrnqg 7385
Description: Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
distrnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))

Proof of Theorem distrnqg
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7346 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7368 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
3 mulpipqqs 7371 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
4 mulclpi 7326 . . . . . . 7 ((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N)
5 simpl 109 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → 𝑦N)
6 mulclpi 7326 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)
75, 6jca 306 . . . . . . 7 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
84, 7anim12i 338 . . . . . 6 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
9 an12 561 . . . . . . 7 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
10 3anass 982 . . . . . . 7 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
119, 10bitr4i 187 . . . . . 6 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
128, 11sylib 122 . . . . 5 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
1312an4s 588 . . . 4 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
14 mulcanenqec 7384 . . . 4 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
1513, 14syl 14 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
163, 15eqtr4d 2213 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q )
17 mulpipqqs 7371 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
18 mulpipqqs 7371 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q )
19 addpipqqs 7368 . 2 ((((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N)) → ([⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q ) = [⟨(((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))), ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢))⟩] ~Q )
20 mulclpi 7326 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
21 mulclpi 7326 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
22 addclpi 7325 . . . . 5 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2320, 21, 22syl2an 289 . . . 4 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2423an42s 589 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
25 mulclpi 7326 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2625ad2ant2l 508 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2724, 26jca 306 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
28 mulclpi 7326 . . . 4 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
29 mulclpi 7326 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3028, 29anim12i 338 . . 3 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
3130an4s 588 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
32 mulclpi 7326 . . . 4 ((𝑥N𝑣N) → (𝑥 ·N 𝑣) ∈ N)
33 mulclpi 7326 . . . 4 ((𝑦N𝑢N) → (𝑦 ·N 𝑢) ∈ N)
3432, 33anim12i 338 . . 3 (((𝑥N𝑣N) ∧ (𝑦N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
3534an4s 588 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
36 an42 587 . . . . 5 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑧N𝑤N) ∧ (𝑣N𝑢N)))
3736anbi2i 457 . . . 4 (((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
38 3anass 982 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))))
39 3anass 982 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
4037, 38, 393bitr4i 212 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)))
41 mulclpi 7326 . . . . . 6 ((𝑦N𝑥N) → (𝑦 ·N 𝑥) ∈ N)
4241ancoms 268 . . . . 5 ((𝑥N𝑦N) → (𝑦 ·N 𝑥) ∈ N)
43 distrpig 7331 . . . . 5 (((𝑦 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
4442, 20, 21, 43syl3an 1280 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
45 simp1r 1022 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑦N)
46 simp1l 1021 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑥N)
47203ad2ant2 1019 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑧 ·N 𝑢) ∈ N)
48213ad2ant3 1020 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑣) ∈ N)
4947, 48, 22syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
50 mulasspig 7330 . . . . 5 ((𝑦N𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
5145, 46, 49, 50syl3anc 1238 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
52 mulcompig 7329 . . . . . . . . 9 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
5352oveq1d 5889 . . . . . . . 8 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
5453adantr 276 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
55 simpll 527 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑥N)
56 simplr 528 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑦N)
57 simprl 529 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑧N)
58 mulcompig 7329 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
5958adantl 277 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
60 mulasspig 7330 . . . . . . . . 9 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6160adantl 277 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
62 simprr 531 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑢N)
63 mulclpi 7326 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6463adantl 277 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6555, 56, 57, 59, 61, 62, 64caov4d 6058 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
6654, 65eqtr3d 2212 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
67663adant3 1017 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
68 simplr 528 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑦N)
69 simpll 527 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑥N)
70 simprl 529 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑤N)
7158adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
7260adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
73 simprr 531 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑣N)
7463adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
7568, 69, 70, 71, 72, 73, 74caov4d 6058 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
76753adant2 1016 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
7767, 76oveq12d 5892 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7844, 51, 773eqtr3d 2218 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7940, 78sylbir 135 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
80703adant2 1016 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑤N)
81623adant3 1017 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑢N)
8280, 81, 25syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
83 mulasspig 7330 . . . . 5 ((𝑦N𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8445, 45, 82, 83syl3anc 1238 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8558adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
8660adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
8763adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
8845, 45, 80, 85, 86, 81, 87caov4d 6058 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
8984, 88eqtr3d 2212 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
9040, 89sylbir 135 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
911, 2, 16, 17, 18, 19, 27, 31, 35, 79, 90ecovidi 6646 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cop 3595  (class class class)co 5874  [cec 6532  Ncnpi 7270   +N cpli 7271   ·N cmi 7272   ~Q ceq 7277  Qcnq 7278   +Q cplq 7280   ·Q cmq 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348
This theorem is referenced by:  ltaddnq  7405  halfnqq  7408  addnqprl  7527  addnqpru  7528  prmuloclemcalc  7563  distrlem1prl  7580  distrlem1pru  7581  distrlem4prl  7582  distrlem4pru  7583
  Copyright terms: Public domain W3C validator