| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5062 fnun 5367 2elresin 5372 f1co 5478 f1oun 5527 f1oco 5530 f1mpt 5821 poxp 6299 tfrlem7 6384 brecop 6693 th3qlem1 6705 oviec 6709 pmss12g 6743 addcmpblnq 7453 mulcmpblnq 7454 mulpipqqs 7459 mulclnq 7462 mulcanenq 7471 distrnqg 7473 mulcmpblnq0 7530 mulcanenq0ec 7531 mulclnq0 7538 nqnq0a 7540 nqnq0m 7541 distrnq0 7545 genipv 7595 genpelvl 7598 genpelvu 7599 genpml 7603 genpmu 7604 genpcdl 7605 genpcuu 7606 genprndl 7607 genprndu 7608 distrlem1prl 7668 distrlem1pru 7669 ltsopr 7682 addcmpblnr 7825 ltsrprg 7833 addclsr 7839 mulclsr 7840 addasssrg 7842 addresr 7923 mulresr 7924 axaddass 7958 axmulass 7959 axdistr 7960 mulgt0 8120 mul4 8177 add4 8206 2addsub 8259 addsubeq4 8260 sub4 8290 muladd 8429 mulsub 8446 add20i 8538 mulge0i 8666 mulap0b 8701 divmuldivap 8758 ltmul12a 8906 zmulcl 9398 uz2mulcl 9701 qaddcl 9728 qmulcl 9730 qreccl 9735 rpaddcl 9771 ge0addcl 10075 ge0xaddcl 10077 expge1 10687 rexanuz 11172 amgm2 11302 iooinsup 11461 mulcn2 11496 dvds2ln 12008 opoe 12079 omoe 12080 opeo 12081 omeo 12082 lcmgcd 12273 lcmdvds 12274 pc2dvds 12526 tgcl 14408 innei 14507 txbas 14602 txss12 14610 txbasval 14611 blsscls2 14837 qtopbasss 14865 lgslem3 15351 bj-indind 15686 |
| Copyright terms: Public domain | W3C validator |