Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an4s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 576 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an42s 579 anandis 582 anandirs 583 trin2 4995 fnun 5294 2elresin 5299 f1co 5405 f1oun 5452 f1oco 5455 f1mpt 5739 poxp 6200 tfrlem7 6285 brecop 6591 th3qlem1 6603 oviec 6607 pmss12g 6641 addcmpblnq 7308 mulcmpblnq 7309 mulpipqqs 7314 mulclnq 7317 mulcanenq 7326 distrnqg 7328 mulcmpblnq0 7385 mulcanenq0ec 7386 mulclnq0 7393 nqnq0a 7395 nqnq0m 7396 distrnq0 7400 genipv 7450 genpelvl 7453 genpelvu 7454 genpml 7458 genpmu 7459 genpcdl 7460 genpcuu 7461 genprndl 7462 genprndu 7463 distrlem1prl 7523 distrlem1pru 7524 ltsopr 7537 addcmpblnr 7680 ltsrprg 7688 addclsr 7694 mulclsr 7695 addasssrg 7697 addresr 7778 mulresr 7779 axaddass 7813 axmulass 7814 axdistr 7815 mulgt0 7973 mul4 8030 add4 8059 2addsub 8112 addsubeq4 8113 sub4 8143 muladd 8282 mulsub 8299 add20i 8390 mulge0i 8518 mulap0b 8552 divmuldivap 8608 ltmul12a 8755 zmulcl 9244 uz2mulcl 9546 qaddcl 9573 qmulcl 9575 qreccl 9580 rpaddcl 9613 ge0addcl 9917 ge0xaddcl 9919 expge1 10492 rexanuz 10930 amgm2 11060 iooinsup 11218 mulcn2 11253 dvds2ln 11764 opoe 11832 omoe 11833 opeo 11834 omeo 11835 lcmgcd 12010 lcmdvds 12011 pc2dvds 12261 tgcl 12704 innei 12803 txbas 12898 txss12 12906 txbasval 12907 blsscls2 13133 qtopbasss 13161 lgslem3 13543 bj-indind 13814 |
Copyright terms: Public domain | W3C validator |