![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5012 fnun 5314 2elresin 5319 f1co 5425 f1oun 5473 f1oco 5476 f1mpt 5762 poxp 6223 tfrlem7 6308 brecop 6615 th3qlem1 6627 oviec 6631 pmss12g 6665 addcmpblnq 7341 mulcmpblnq 7342 mulpipqqs 7347 mulclnq 7350 mulcanenq 7359 distrnqg 7361 mulcmpblnq0 7418 mulcanenq0ec 7419 mulclnq0 7426 nqnq0a 7428 nqnq0m 7429 distrnq0 7433 genipv 7483 genpelvl 7486 genpelvu 7487 genpml 7491 genpmu 7492 genpcdl 7493 genpcuu 7494 genprndl 7495 genprndu 7496 distrlem1prl 7556 distrlem1pru 7557 ltsopr 7570 addcmpblnr 7713 ltsrprg 7721 addclsr 7727 mulclsr 7728 addasssrg 7730 addresr 7811 mulresr 7812 axaddass 7846 axmulass 7847 axdistr 7848 mulgt0 8006 mul4 8063 add4 8092 2addsub 8145 addsubeq4 8146 sub4 8176 muladd 8315 mulsub 8332 add20i 8423 mulge0i 8551 mulap0b 8585 divmuldivap 8642 ltmul12a 8790 zmulcl 9279 uz2mulcl 9581 qaddcl 9608 qmulcl 9610 qreccl 9615 rpaddcl 9648 ge0addcl 9952 ge0xaddcl 9954 expge1 10527 rexanuz 10965 amgm2 11095 iooinsup 11253 mulcn2 11288 dvds2ln 11799 opoe 11867 omoe 11868 opeo 11869 omeo 11870 lcmgcd 12045 lcmdvds 12046 pc2dvds 12296 tgcl 13135 innei 13234 txbas 13329 txss12 13337 txbasval 13338 blsscls2 13564 qtopbasss 13592 lgslem3 13974 bj-indind 14244 |
Copyright terms: Public domain | W3C validator |