| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5073 fnun 5381 2elresin 5386 f1co 5492 f1oun 5541 f1oco 5544 f1mpt 5839 poxp 6317 tfrlem7 6402 brecop 6711 th3qlem1 6723 oviec 6727 pmss12g 6761 addcmpblnq 7479 mulcmpblnq 7480 mulpipqqs 7485 mulclnq 7488 mulcanenq 7497 distrnqg 7499 mulcmpblnq0 7556 mulcanenq0ec 7557 mulclnq0 7564 nqnq0a 7566 nqnq0m 7567 distrnq0 7571 genipv 7621 genpelvl 7624 genpelvu 7625 genpml 7629 genpmu 7630 genpcdl 7631 genpcuu 7632 genprndl 7633 genprndu 7634 distrlem1prl 7694 distrlem1pru 7695 ltsopr 7708 addcmpblnr 7851 ltsrprg 7859 addclsr 7865 mulclsr 7866 addasssrg 7868 addresr 7949 mulresr 7950 axaddass 7984 axmulass 7985 axdistr 7986 mulgt0 8146 mul4 8203 add4 8232 2addsub 8285 addsubeq4 8286 sub4 8316 muladd 8455 mulsub 8472 add20i 8564 mulge0i 8692 mulap0b 8727 divmuldivap 8784 ltmul12a 8932 zmulcl 9425 uz2mulcl 9728 qaddcl 9755 qmulcl 9757 qreccl 9762 rpaddcl 9798 ge0addcl 10102 ge0xaddcl 10104 expge1 10719 rexanuz 11241 amgm2 11371 iooinsup 11530 mulcn2 11565 dvds2ln 12077 opoe 12148 omoe 12149 opeo 12150 omeo 12151 lcmgcd 12342 lcmdvds 12343 pc2dvds 12595 tgcl 14478 innei 14577 txbas 14672 txss12 14680 txbasval 14681 blsscls2 14907 qtopbasss 14935 lgslem3 15421 bj-indind 15801 |
| Copyright terms: Public domain | W3C validator |