| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5093 fnun 5401 2elresin 5406 f1co 5515 f1oun 5564 f1oco 5567 f1mpt 5863 poxp 6341 tfrlem7 6426 brecop 6735 th3qlem1 6747 oviec 6751 pmss12g 6785 addcmpblnq 7515 mulcmpblnq 7516 mulpipqqs 7521 mulclnq 7524 mulcanenq 7533 distrnqg 7535 mulcmpblnq0 7592 mulcanenq0ec 7593 mulclnq0 7600 nqnq0a 7602 nqnq0m 7603 distrnq0 7607 genipv 7657 genpelvl 7660 genpelvu 7661 genpml 7665 genpmu 7666 genpcdl 7667 genpcuu 7668 genprndl 7669 genprndu 7670 distrlem1prl 7730 distrlem1pru 7731 ltsopr 7744 addcmpblnr 7887 ltsrprg 7895 addclsr 7901 mulclsr 7902 addasssrg 7904 addresr 7985 mulresr 7986 axaddass 8020 axmulass 8021 axdistr 8022 mulgt0 8182 mul4 8239 add4 8268 2addsub 8321 addsubeq4 8322 sub4 8352 muladd 8491 mulsub 8508 add20i 8600 mulge0i 8728 mulap0b 8763 divmuldivap 8820 ltmul12a 8968 zmulcl 9461 uz2mulcl 9764 qaddcl 9791 qmulcl 9793 qreccl 9798 rpaddcl 9834 ge0addcl 10138 ge0xaddcl 10140 expge1 10758 rexanuz 11414 amgm2 11544 iooinsup 11703 mulcn2 11738 dvds2ln 12250 opoe 12321 omoe 12322 opeo 12323 omeo 12324 lcmgcd 12515 lcmdvds 12516 pc2dvds 12768 tgcl 14651 innei 14750 txbas 14845 txss12 14853 txbasval 14854 blsscls2 15080 qtopbasss 15108 lgslem3 15594 bj-indind 16067 |
| Copyright terms: Public domain | W3C validator |