![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5058 fnun 5361 2elresin 5366 f1co 5472 f1oun 5521 f1oco 5524 f1mpt 5815 poxp 6287 tfrlem7 6372 brecop 6681 th3qlem1 6693 oviec 6697 pmss12g 6731 addcmpblnq 7429 mulcmpblnq 7430 mulpipqqs 7435 mulclnq 7438 mulcanenq 7447 distrnqg 7449 mulcmpblnq0 7506 mulcanenq0ec 7507 mulclnq0 7514 nqnq0a 7516 nqnq0m 7517 distrnq0 7521 genipv 7571 genpelvl 7574 genpelvu 7575 genpml 7579 genpmu 7580 genpcdl 7581 genpcuu 7582 genprndl 7583 genprndu 7584 distrlem1prl 7644 distrlem1pru 7645 ltsopr 7658 addcmpblnr 7801 ltsrprg 7809 addclsr 7815 mulclsr 7816 addasssrg 7818 addresr 7899 mulresr 7900 axaddass 7934 axmulass 7935 axdistr 7936 mulgt0 8096 mul4 8153 add4 8182 2addsub 8235 addsubeq4 8236 sub4 8266 muladd 8405 mulsub 8422 add20i 8513 mulge0i 8641 mulap0b 8676 divmuldivap 8733 ltmul12a 8881 zmulcl 9373 uz2mulcl 9676 qaddcl 9703 qmulcl 9705 qreccl 9710 rpaddcl 9746 ge0addcl 10050 ge0xaddcl 10052 expge1 10650 rexanuz 11135 amgm2 11265 iooinsup 11423 mulcn2 11458 dvds2ln 11970 opoe 12039 omoe 12040 opeo 12041 omeo 12042 lcmgcd 12219 lcmdvds 12220 pc2dvds 12471 tgcl 14243 innei 14342 txbas 14437 txss12 14445 txbasval 14446 blsscls2 14672 qtopbasss 14700 lgslem3 15159 bj-indind 15494 |
Copyright terms: Public domain | W3C validator |