| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 591 anandis 594 anandirs 595 trin2 5119 fnun 5428 2elresin 5433 f1co 5542 f1oun 5591 f1oco 5594 f1mpt 5894 poxp 6376 tfrlem7 6461 brecop 6770 th3qlem1 6782 oviec 6786 pmss12g 6820 addcmpblnq 7550 mulcmpblnq 7551 mulpipqqs 7556 mulclnq 7559 mulcanenq 7568 distrnqg 7570 mulcmpblnq0 7627 mulcanenq0ec 7628 mulclnq0 7635 nqnq0a 7637 nqnq0m 7638 distrnq0 7642 genipv 7692 genpelvl 7695 genpelvu 7696 genpml 7700 genpmu 7701 genpcdl 7702 genpcuu 7703 genprndl 7704 genprndu 7705 distrlem1prl 7765 distrlem1pru 7766 ltsopr 7779 addcmpblnr 7922 ltsrprg 7930 addclsr 7936 mulclsr 7937 addasssrg 7939 addresr 8020 mulresr 8021 axaddass 8055 axmulass 8056 axdistr 8057 mulgt0 8217 mul4 8274 add4 8303 2addsub 8356 addsubeq4 8357 sub4 8387 muladd 8526 mulsub 8543 add20i 8635 mulge0i 8763 mulap0b 8798 divmuldivap 8855 ltmul12a 9003 zmulcl 9496 uz2mulcl 9799 qaddcl 9826 qmulcl 9828 qreccl 9833 rpaddcl 9869 ge0addcl 10173 ge0xaddcl 10175 expge1 10793 rexanuz 11494 amgm2 11624 iooinsup 11783 mulcn2 11818 dvds2ln 12330 opoe 12401 omoe 12402 opeo 12403 omeo 12404 lcmgcd 12595 lcmdvds 12596 pc2dvds 12848 tgcl 14732 innei 14831 txbas 14926 txss12 14934 txbasval 14935 blsscls2 15161 qtopbasss 15189 lgslem3 15675 bj-indind 16253 |
| Copyright terms: Public domain | W3C validator |