![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5057 fnun 5360 2elresin 5365 f1co 5471 f1oun 5520 f1oco 5523 f1mpt 5814 poxp 6285 tfrlem7 6370 brecop 6679 th3qlem1 6691 oviec 6695 pmss12g 6729 addcmpblnq 7427 mulcmpblnq 7428 mulpipqqs 7433 mulclnq 7436 mulcanenq 7445 distrnqg 7447 mulcmpblnq0 7504 mulcanenq0ec 7505 mulclnq0 7512 nqnq0a 7514 nqnq0m 7515 distrnq0 7519 genipv 7569 genpelvl 7572 genpelvu 7573 genpml 7577 genpmu 7578 genpcdl 7579 genpcuu 7580 genprndl 7581 genprndu 7582 distrlem1prl 7642 distrlem1pru 7643 ltsopr 7656 addcmpblnr 7799 ltsrprg 7807 addclsr 7813 mulclsr 7814 addasssrg 7816 addresr 7897 mulresr 7898 axaddass 7932 axmulass 7933 axdistr 7934 mulgt0 8094 mul4 8151 add4 8180 2addsub 8233 addsubeq4 8234 sub4 8264 muladd 8403 mulsub 8420 add20i 8511 mulge0i 8639 mulap0b 8674 divmuldivap 8731 ltmul12a 8879 zmulcl 9370 uz2mulcl 9673 qaddcl 9700 qmulcl 9702 qreccl 9707 rpaddcl 9743 ge0addcl 10047 ge0xaddcl 10049 expge1 10647 rexanuz 11132 amgm2 11262 iooinsup 11420 mulcn2 11455 dvds2ln 11967 opoe 12036 omoe 12037 opeo 12038 omeo 12039 lcmgcd 12216 lcmdvds 12217 pc2dvds 12468 tgcl 14232 innei 14331 txbas 14426 txss12 14434 txbasval 14435 blsscls2 14661 qtopbasss 14689 lgslem3 15118 bj-indind 15424 |
Copyright terms: Public domain | W3C validator |