| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5062 fnun 5367 2elresin 5372 f1co 5478 f1oun 5527 f1oco 5530 f1mpt 5821 poxp 6299 tfrlem7 6384 brecop 6693 th3qlem1 6705 oviec 6709 pmss12g 6743 addcmpblnq 7451 mulcmpblnq 7452 mulpipqqs 7457 mulclnq 7460 mulcanenq 7469 distrnqg 7471 mulcmpblnq0 7528 mulcanenq0ec 7529 mulclnq0 7536 nqnq0a 7538 nqnq0m 7539 distrnq0 7543 genipv 7593 genpelvl 7596 genpelvu 7597 genpml 7601 genpmu 7602 genpcdl 7603 genpcuu 7604 genprndl 7605 genprndu 7606 distrlem1prl 7666 distrlem1pru 7667 ltsopr 7680 addcmpblnr 7823 ltsrprg 7831 addclsr 7837 mulclsr 7838 addasssrg 7840 addresr 7921 mulresr 7922 axaddass 7956 axmulass 7957 axdistr 7958 mulgt0 8118 mul4 8175 add4 8204 2addsub 8257 addsubeq4 8258 sub4 8288 muladd 8427 mulsub 8444 add20i 8536 mulge0i 8664 mulap0b 8699 divmuldivap 8756 ltmul12a 8904 zmulcl 9396 uz2mulcl 9699 qaddcl 9726 qmulcl 9728 qreccl 9733 rpaddcl 9769 ge0addcl 10073 ge0xaddcl 10075 expge1 10685 rexanuz 11170 amgm2 11300 iooinsup 11459 mulcn2 11494 dvds2ln 12006 opoe 12077 omoe 12078 opeo 12079 omeo 12080 lcmgcd 12271 lcmdvds 12272 pc2dvds 12524 tgcl 14384 innei 14483 txbas 14578 txss12 14586 txbasval 14587 blsscls2 14813 qtopbasss 14841 lgslem3 15327 bj-indind 15662 |
| Copyright terms: Public domain | W3C validator |