Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an4s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 581 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an42s 584 anandis 587 anandirs 588 trin2 5002 fnun 5304 2elresin 5309 f1co 5415 f1oun 5462 f1oco 5465 f1mpt 5750 poxp 6211 tfrlem7 6296 brecop 6603 th3qlem1 6615 oviec 6619 pmss12g 6653 addcmpblnq 7329 mulcmpblnq 7330 mulpipqqs 7335 mulclnq 7338 mulcanenq 7347 distrnqg 7349 mulcmpblnq0 7406 mulcanenq0ec 7407 mulclnq0 7414 nqnq0a 7416 nqnq0m 7417 distrnq0 7421 genipv 7471 genpelvl 7474 genpelvu 7475 genpml 7479 genpmu 7480 genpcdl 7481 genpcuu 7482 genprndl 7483 genprndu 7484 distrlem1prl 7544 distrlem1pru 7545 ltsopr 7558 addcmpblnr 7701 ltsrprg 7709 addclsr 7715 mulclsr 7716 addasssrg 7718 addresr 7799 mulresr 7800 axaddass 7834 axmulass 7835 axdistr 7836 mulgt0 7994 mul4 8051 add4 8080 2addsub 8133 addsubeq4 8134 sub4 8164 muladd 8303 mulsub 8320 add20i 8411 mulge0i 8539 mulap0b 8573 divmuldivap 8629 ltmul12a 8776 zmulcl 9265 uz2mulcl 9567 qaddcl 9594 qmulcl 9596 qreccl 9601 rpaddcl 9634 ge0addcl 9938 ge0xaddcl 9940 expge1 10513 rexanuz 10952 amgm2 11082 iooinsup 11240 mulcn2 11275 dvds2ln 11786 opoe 11854 omoe 11855 opeo 11856 omeo 11857 lcmgcd 12032 lcmdvds 12033 pc2dvds 12283 tgcl 12858 innei 12957 txbas 13052 txss12 13060 txbasval 13061 blsscls2 13287 qtopbasss 13315 lgslem3 13697 bj-indind 13967 |
Copyright terms: Public domain | W3C validator |