ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql GIF version

Theorem prcdnql 7446
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))

Proof of Theorem prcdnql
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7327 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4663 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simpld 111 . . . 4 (𝐶 <Q 𝐵𝐶Q)
43adantl 275 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶Q)
5 breq1 3992 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 <Q 𝐵𝐶 <Q 𝐵))
6 eleq1 2233 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝐿𝐶𝐿))
75, 6imbi12d 233 . . . . . 6 (𝑐 = 𝐶 → ((𝑐 <Q 𝐵𝑐𝐿) ↔ (𝐶 <Q 𝐵𝐶𝐿)))
87imbi2d 229 . . . . 5 (𝑐 = 𝐶 → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))))
91brel 4663 . . . . . . . . 9 (𝑐 <Q 𝐵 → (𝑐Q𝐵Q))
109ancomd 265 . . . . . . . 8 (𝑐 <Q 𝐵 → (𝐵Q𝑐Q))
11 an42 582 . . . . . . . . 9 (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)))
12 breq2 3993 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑐 <Q 𝑏𝑐 <Q 𝐵))
13 eleq1 2233 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑏𝐿𝐵𝐿))
1412, 13anbi12d 470 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → ((𝑐 <Q 𝑏𝑏𝐿) ↔ (𝑐 <Q 𝐵𝐵𝐿)))
1514rspcev 2834 . . . . . . . . . . . . . 14 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿))
16 elinp 7436 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
17 simpr1l 1049 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1816, 17sylbi 120 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1918r19.21bi 2558 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
2015, 19syl5ibrcom 156 . . . . . . . . . . . . 13 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
21203impb 1194 . . . . . . . . . . . 12 ((𝐵Q𝑐 <Q 𝐵𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
22213com12 1202 . . . . . . . . . . 11 ((𝑐 <Q 𝐵𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
23223expib 1201 . . . . . . . . . 10 (𝑐 <Q 𝐵 → ((𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿)))
2423impd 252 . . . . . . . . 9 (𝑐 <Q 𝐵 → (((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)) → 𝑐𝐿))
2511, 24syl5bi 151 . . . . . . . 8 (𝑐 <Q 𝐵 → (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑐𝐿))
2610, 25mpand 427 . . . . . . 7 (𝑐 <Q 𝐵 → ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑐𝐿))
2726com12 30 . . . . . 6 ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝑐 <Q 𝐵𝑐𝐿))
2827ancoms 266 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿))
298, 28vtoclg 2790 . . . 4 (𝐶Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿)))
3029impd 252 . . 3 (𝐶Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿))
314, 30mpcom 36 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿)
3231ex 114 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  cop 3586   class class class wbr 3989  Qcnq 7242   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-qs 6519  df-ni 7266  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  prubl  7448  addnqprllem  7489  nqprl  7513  mulnqprl  7530  distrlem4prl  7546  ltprordil  7551  1idprl  7552  ltpopr  7557  ltaddpr  7559  ltexprlemlol  7564  ltexprlemfl  7571  ltexprlemrl  7572  aptiprleml  7601  aptiprlemu  7602  archrecpr  7626  caucvgprprlemml  7656  suplocexprlemrl  7679  suplocexprlemloc  7683
  Copyright terms: Public domain W3C validator