ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql GIF version

Theorem prcdnql 7604
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))

Proof of Theorem prcdnql
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7485 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4731 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simpld 112 . . . 4 (𝐶 <Q 𝐵𝐶Q)
43adantl 277 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶Q)
5 breq1 4050 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 <Q 𝐵𝐶 <Q 𝐵))
6 eleq1 2269 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝐿𝐶𝐿))
75, 6imbi12d 234 . . . . . 6 (𝑐 = 𝐶 → ((𝑐 <Q 𝐵𝑐𝐿) ↔ (𝐶 <Q 𝐵𝐶𝐿)))
87imbi2d 230 . . . . 5 (𝑐 = 𝐶 → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))))
91brel 4731 . . . . . . . . 9 (𝑐 <Q 𝐵 → (𝑐Q𝐵Q))
109ancomd 267 . . . . . . . 8 (𝑐 <Q 𝐵 → (𝐵Q𝑐Q))
11 an42 587 . . . . . . . . 9 (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)))
12 breq2 4051 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑐 <Q 𝑏𝑐 <Q 𝐵))
13 eleq1 2269 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑏𝐿𝐵𝐿))
1412, 13anbi12d 473 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → ((𝑐 <Q 𝑏𝑏𝐿) ↔ (𝑐 <Q 𝐵𝐵𝐿)))
1514rspcev 2878 . . . . . . . . . . . . . 14 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿))
16 elinp 7594 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
17 simpr1l 1057 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1816, 17sylbi 121 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1918r19.21bi 2595 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
2015, 19syl5ibrcom 157 . . . . . . . . . . . . 13 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
21203impb 1202 . . . . . . . . . . . 12 ((𝐵Q𝑐 <Q 𝐵𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
22213com12 1210 . . . . . . . . . . 11 ((𝑐 <Q 𝐵𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
23223expib 1209 . . . . . . . . . 10 (𝑐 <Q 𝐵 → ((𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿)))
2423impd 254 . . . . . . . . 9 (𝑐 <Q 𝐵 → (((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)) → 𝑐𝐿))
2511, 24biimtrid 152 . . . . . . . 8 (𝑐 <Q 𝐵 → (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑐𝐿))
2610, 25mpand 429 . . . . . . 7 (𝑐 <Q 𝐵 → ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑐𝐿))
2726com12 30 . . . . . 6 ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝑐 <Q 𝐵𝑐𝐿))
2827ancoms 268 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿))
298, 28vtoclg 2834 . . . 4 (𝐶Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿)))
3029impd 254 . . 3 (𝐶Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿))
314, 30mpcom 36 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿)
3231ex 115 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  wss 3167  cop 3637   class class class wbr 4047  Qcnq 7400   <Q cltq 7405  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-qs 6633  df-ni 7424  df-nqqs 7468  df-ltnqqs 7473  df-inp 7586
This theorem is referenced by:  prubl  7606  addnqprllem  7647  nqprl  7671  mulnqprl  7688  distrlem4prl  7704  ltprordil  7709  1idprl  7710  ltpopr  7715  ltaddpr  7717  ltexprlemlol  7722  ltexprlemfl  7729  ltexprlemrl  7730  aptiprleml  7759  aptiprlemu  7760  archrecpr  7784  caucvgprprlemml  7814  suplocexprlemrl  7837  suplocexprlemloc  7841
  Copyright terms: Public domain W3C validator