ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql GIF version

Theorem prcdnql 7639
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))

Proof of Theorem prcdnql
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7520 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4748 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simpld 112 . . . 4 (𝐶 <Q 𝐵𝐶Q)
43adantl 277 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶Q)
5 breq1 4065 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 <Q 𝐵𝐶 <Q 𝐵))
6 eleq1 2272 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝐿𝐶𝐿))
75, 6imbi12d 234 . . . . . 6 (𝑐 = 𝐶 → ((𝑐 <Q 𝐵𝑐𝐿) ↔ (𝐶 <Q 𝐵𝐶𝐿)))
87imbi2d 230 . . . . 5 (𝑐 = 𝐶 → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))))
91brel 4748 . . . . . . . . 9 (𝑐 <Q 𝐵 → (𝑐Q𝐵Q))
109ancomd 267 . . . . . . . 8 (𝑐 <Q 𝐵 → (𝐵Q𝑐Q))
11 an42 587 . . . . . . . . 9 (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)))
12 breq2 4066 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑐 <Q 𝑏𝑐 <Q 𝐵))
13 eleq1 2272 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑏𝐿𝐵𝐿))
1412, 13anbi12d 473 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → ((𝑐 <Q 𝑏𝑏𝐿) ↔ (𝑐 <Q 𝐵𝐵𝐿)))
1514rspcev 2887 . . . . . . . . . . . . . 14 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿))
16 elinp 7629 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
17 simpr1l 1059 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1816, 17sylbi 121 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1918r19.21bi 2598 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
2015, 19syl5ibrcom 157 . . . . . . . . . . . . 13 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
21203impb 1204 . . . . . . . . . . . 12 ((𝐵Q𝑐 <Q 𝐵𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
22213com12 1212 . . . . . . . . . . 11 ((𝑐 <Q 𝐵𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
23223expib 1211 . . . . . . . . . 10 (𝑐 <Q 𝐵 → ((𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿)))
2423impd 254 . . . . . . . . 9 (𝑐 <Q 𝐵 → (((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)) → 𝑐𝐿))
2511, 24biimtrid 152 . . . . . . . 8 (𝑐 <Q 𝐵 → (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑐𝐿))
2610, 25mpand 429 . . . . . . 7 (𝑐 <Q 𝐵 → ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑐𝐿))
2726com12 30 . . . . . 6 ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝑐 <Q 𝐵𝑐𝐿))
2827ancoms 268 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿))
298, 28vtoclg 2841 . . . 4 (𝐶Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿)))
3029impd 254 . . 3 (𝐶Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿))
314, 30mpcom 36 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿)
3231ex 115 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  w3a 983   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wss 3177  cop 3649   class class class wbr 4062  Qcnq 7435   <Q cltq 7440  Pcnp 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-qs 6656  df-ni 7459  df-nqqs 7503  df-ltnqqs 7508  df-inp 7621
This theorem is referenced by:  prubl  7641  addnqprllem  7682  nqprl  7706  mulnqprl  7723  distrlem4prl  7739  ltprordil  7744  1idprl  7745  ltpopr  7750  ltaddpr  7752  ltexprlemlol  7757  ltexprlemfl  7764  ltexprlemrl  7765  aptiprleml  7794  aptiprlemu  7795  archrecpr  7819  caucvgprprlemml  7849  suplocexprlemrl  7872  suplocexprlemloc  7876
  Copyright terms: Public domain W3C validator