| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsass | GIF version | ||
| Description: Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsass.t | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2204 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2204 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
| 8 | eqid 2204 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 13972 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 10 | 9 | simprld 530 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 11 | 10 | 3expa 1205 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 12 | 11 | anabsan2 584 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| 13 | 12 | exp42 371 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
| 14 | 13 | 3imp2 1224 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 .rcmulr 12829 Scalarcsca 12831 ·𝑠 cvsca 12832 1rcur 13639 LModclmod 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-mulr 12842 df-sca 12844 df-vsca 12845 df-lmod 13969 |
| This theorem is referenced by: lmodvs0 14002 lmodvsneg 14011 lmodsubvs 14023 lmodsubdi 14024 lmodsubdir 14025 islss3 14059 lss1d 14063 |
| Copyright terms: Public domain | W3C validator |