![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodvsdir | GIF version |
Description: Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdir.v | β’ π = (Baseβπ) |
lmodvsdir.a | β’ + = (+gβπ) |
lmodvsdir.f | β’ πΉ = (Scalarβπ) |
lmodvsdir.s | β’ Β· = ( Β·π βπ) |
lmodvsdir.k | β’ πΎ = (BaseβπΉ) |
lmodvsdir.p | ⒠⨣ = (+gβπΉ) |
Ref | Expression |
---|---|
lmodvsdir | β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdir.v | . . . . . . . 8 β’ π = (Baseβπ) | |
2 | lmodvsdir.a | . . . . . . . 8 β’ + = (+gβπ) | |
3 | lmodvsdir.s | . . . . . . . 8 β’ Β· = ( Β·π βπ) | |
4 | lmodvsdir.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmodvsdir.k | . . . . . . . 8 β’ πΎ = (BaseβπΉ) | |
6 | lmodvsdir.p | . . . . . . . 8 ⒠⨣ = (+gβπΉ) | |
7 | eqid 2177 | . . . . . . . 8 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2177 | . . . . . . . 8 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 13387 | . . . . . . 7 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β (((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) β§ (((π(.rβπΉ)π ) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π))) |
10 | 9 | simpld 112 | . . . . . 6 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π Β· π) β π β§ (π Β· (π + π)) = ((π Β· π) + (π Β· π)) β§ ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))) |
11 | 10 | simp3d 1011 | . . . . 5 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
12 | 11 | 3expa 1203 | . . . 4 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ (π β π β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
13 | 12 | anabsan2 584 | . . 3 β’ (((π β LMod β§ (π β πΎ β§ π β πΎ)) β§ π β π) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
14 | 13 | exp42 371 | . 2 β’ (π β LMod β (π β πΎ β (π β πΎ β (π β π β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π)))))) |
15 | 14 | 3imp2 1222 | 1 β’ ((π β LMod β§ (π β πΎ β§ π β πΎ β§ π β π)) β ((π ⨣ π ) Β· π) = ((π Β· π) + (π Β· π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 βcfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 .rcmulr 12539 Scalarcsca 12541 Β·π cvsca 12542 1rcur 13147 LModclmod 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-lmod 13384 |
This theorem is referenced by: lmod0vs 13416 lmodvsmmulgdi 13418 lmodvneg1 13425 lmodcom 13428 lmodsubdir 13440 islss3 13471 lss1d 13475 |
Copyright terms: Public domain | W3C validator |