| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lss0cl | GIF version | ||
| Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lss0cl.z | ⊢ 0 = (0g‘𝑊) |
| lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss0cl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2204 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | eqid 2204 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2204 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2204 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islssmg 14038 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
| 8 | 7 | biimpa 296 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
| 9 | 8 | simp2d 1012 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∃𝑥 𝑥 ∈ 𝑈) |
| 10 | simp1 999 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) | |
| 11 | 3, 6 | lsselg 14041 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
| 12 | lss0cl.z | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
| 13 | eqid 2204 | . . . . . . 7 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 14 | 3, 12, 13 | lmodsubid 14027 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(-g‘𝑊)𝑥) = 0 ) |
| 15 | 10, 11, 14 | syl2anc 411 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) = 0 ) |
| 16 | 13, 6 | lssvsubcl 14046 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈)) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
| 17 | 16 | anabsan2 584 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
| 18 | 17 | 3impa 1196 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
| 19 | 15, 18 | eqeltrrd 2282 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 0 ∈ 𝑈) |
| 20 | 19 | 3expia 1207 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) |
| 21 | 20 | exlimdv 1841 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑥 𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) |
| 22 | 9, 21 | mpd 13 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 Scalarcsca 12831 ·𝑠 cvsca 12832 0gc0g 13006 -gcsg 13252 LModclmod 13967 LSubSpclss 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-sca 12844 df-vsca 12845 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-sbg 13255 df-mgp 13601 df-ur 13640 df-ring 13678 df-lmod 13969 df-lssm 14033 |
| This theorem is referenced by: lss0ss 14051 lssvneln0 14053 lssvscl 14055 lsssubg 14057 lssintclm 14064 lidl0cl 14163 |
| Copyright terms: Public domain | W3C validator |