![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lss0cl | GIF version |
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss0cl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2193 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | eqid 2193 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2193 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2193 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islssmg 13857 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
8 | 7 | biimpa 296 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
9 | 8 | simp2d 1012 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∃𝑥 𝑥 ∈ 𝑈) |
10 | simp1 999 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) | |
11 | 3, 6 | lsselg 13860 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
12 | lss0cl.z | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
13 | eqid 2193 | . . . . . . 7 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 3, 12, 13 | lmodsubid 13846 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(-g‘𝑊)𝑥) = 0 ) |
15 | 10, 11, 14 | syl2anc 411 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) = 0 ) |
16 | 13, 6 | lssvsubcl 13865 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈)) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
17 | 16 | anabsan2 584 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
18 | 17 | 3impa 1196 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) |
19 | 15, 18 | eqeltrrd 2271 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 0 ∈ 𝑈) |
20 | 19 | 3expia 1207 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) |
21 | 20 | exlimdv 1830 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑥 𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) |
22 | 9, 21 | mpd 13 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Scalarcsca 12701 ·𝑠 cvsca 12702 0gc0g 12870 -gcsg 13077 LModclmod 13786 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-mgp 13420 df-ur 13459 df-ring 13497 df-lmod 13788 df-lssm 13852 |
This theorem is referenced by: lss0ss 13870 lssvneln0 13872 lssvscl 13874 lsssubg 13876 lssintclm 13883 lidl0cl 13982 |
Copyright terms: Public domain | W3C validator |