ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss0cl GIF version

Theorem lss0cl 14206
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss0cl ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)

Proof of Theorem lss0cl
Dummy variables 𝑥 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2206 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 eqid 2206 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2206 . . . . 5 (+g𝑊) = (+g𝑊)
5 eqid 2206 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 lss0cl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islssmg 14195 . . . 4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏𝑈𝑐𝑈 ((𝑎( ·𝑠𝑊)𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
87biimpa 296 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏𝑈𝑐𝑈 ((𝑎( ·𝑠𝑊)𝑏)(+g𝑊)𝑐) ∈ 𝑈))
98simp2d 1013 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∃𝑥 𝑥𝑈)
10 simp1 1000 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 𝑊 ∈ LMod)
113, 6lsselg 14198 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
12 lss0cl.z . . . . . . 7 0 = (0g𝑊)
13 eqid 2206 . . . . . . 7 (-g𝑊) = (-g𝑊)
143, 12, 13lmodsubid 14184 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(-g𝑊)𝑥) = 0 )
1510, 11, 14syl2anc 411 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → (𝑥(-g𝑊)𝑥) = 0 )
1613, 6lssvsubcl 14203 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥𝑈𝑥𝑈)) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
1716anabsan2 584 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
18173impa 1197 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → (𝑥(-g𝑊)𝑥) ∈ 𝑈)
1915, 18eqeltrrd 2284 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → 0𝑈)
20193expia 1208 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑥𝑈0𝑈))
2120exlimdv 1843 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑥 𝑥𝑈0𝑈))
229, 21mpd 13 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wss 3170  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Scalarcsca 12987   ·𝑠 cvsca 12988  0gc0g 13163  -gcsg 13409  LModclmod 14124  LSubSpclss 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412  df-mgp 13758  df-ur 13797  df-ring 13835  df-lmod 14126  df-lssm 14190
This theorem is referenced by:  lss0ss  14208  lssvneln0  14210  lssvscl  14212  lsssubg  14214  lssintclm  14221  lidl0cl  14320
  Copyright terms: Public domain W3C validator