| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lss0cl | GIF version | ||
| Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| lss0cl.z | ⊢ 0 = (0g‘𝑊) | 
| lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) | 
| Ref | Expression | 
|---|---|
| lss0cl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2196 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2196 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2196 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islssmg 13914 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) | 
| 8 | 7 | biimpa 296 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑥 𝑥 ∈ 𝑈 ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎( ·𝑠 ‘𝑊)𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) | 
| 9 | 8 | simp2d 1012 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∃𝑥 𝑥 ∈ 𝑈) | 
| 10 | simp1 999 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) | |
| 11 | 3, 6 | lsselg 13917 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) | 
| 12 | lss0cl.z | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
| 13 | eqid 2196 | . . . . . . 7 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 14 | 3, 12, 13 | lmodsubid 13903 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(-g‘𝑊)𝑥) = 0 ) | 
| 15 | 10, 11, 14 | syl2anc 411 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) = 0 ) | 
| 16 | 13, 6 | lssvsubcl 13922 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈)) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) | 
| 17 | 16 | anabsan2 584 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) | 
| 18 | 17 | 3impa 1196 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → (𝑥(-g‘𝑊)𝑥) ∈ 𝑈) | 
| 19 | 15, 18 | eqeltrrd 2274 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 0 ∈ 𝑈) | 
| 20 | 19 | 3expia 1207 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) | 
| 21 | 20 | exlimdv 1833 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑥 𝑥 ∈ 𝑈 → 0 ∈ 𝑈)) | 
| 22 | 9, 21 | mpd 13 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Scalarcsca 12758 ·𝑠 cvsca 12759 0gc0g 12927 -gcsg 13134 LModclmod 13843 LSubSpclss 13908 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mgp 13477 df-ur 13516 df-ring 13554 df-lmod 13845 df-lssm 13909 | 
| This theorem is referenced by: lss0ss 13927 lssvneln0 13929 lssvscl 13931 lsssubg 13933 lssintclm 13940 lidl0cl 14039 | 
| Copyright terms: Public domain | W3C validator |