![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an12s | GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 561 is combined with syl 14 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 561 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anabsan2 584 1stconst 6219 2ndconst 6220 sbthlemi5 6957 iccshftr 9990 iccshftl 9992 iccdil 9994 icccntr 9996 zfz1iso 10814 ndvdsadd 11928 neipsm 13525 |
Copyright terms: Public domain | W3C validator |