| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leltadd | GIF version | ||
| Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.) |
| Ref | Expression |
|---|---|
| leltadd | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltleadd 8581 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 < 𝐷 ∧ 𝐴 ≤ 𝐶) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) | |
| 2 | 1 | ancomsd 269 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
| 3 | 2 | ancom2s 566 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
| 4 | 3 | ancom1s 569 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
| 5 | recn 8120 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | recn 8120 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 7 | addcom 8271 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 8 | 5, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 9 | recn 8120 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
| 10 | recn 8120 | . . . 4 ⊢ (𝐷 ∈ ℝ → 𝐷 ∈ ℂ) | |
| 11 | addcom 8271 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) | |
| 12 | 9, 10, 11 | syl2an 289 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 13 | 8, 12 | breqan12d 4098 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + 𝐵) < (𝐶 + 𝐷) ↔ (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
| 14 | 4, 13 | sylibrd 169 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℂcc 7985 ℝcr 7986 + caddc 7990 < clt 8169 ≤ cle 8170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0id 8095 ax-rnegex 8096 ax-pre-ltwlin 8100 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 |
| This theorem is referenced by: addgegt0 8584 leltaddd 8701 |
| Copyright terms: Public domain | W3C validator |