![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leltadd | GIF version |
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.) |
Ref | Expression |
---|---|
leltadd | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltleadd 8405 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 < 𝐷 ∧ 𝐴 ≤ 𝐶) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) | |
2 | 1 | ancomsd 269 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
3 | 2 | ancom2s 566 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
4 | 3 | ancom1s 569 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
5 | recn 7946 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | recn 7946 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
7 | addcom 8096 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
8 | 5, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
9 | recn 7946 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
10 | recn 7946 | . . . 4 ⊢ (𝐷 ∈ ℝ → 𝐷 ∈ ℂ) | |
11 | addcom 8096 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) | |
12 | 9, 10, 11 | syl2an 289 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
13 | 8, 12 | breqan12d 4021 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + 𝐵) < (𝐶 + 𝐷) ↔ (𝐵 + 𝐴) < (𝐷 + 𝐶))) |
14 | 4, 13 | sylibrd 169 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 ℝcr 7812 + caddc 7816 < clt 7994 ≤ cle 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-pre-ltwlin 7926 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-iota 5180 df-fv 5226 df-ov 5880 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 |
This theorem is referenced by: addgegt0 8408 leltaddd 8525 |
Copyright terms: Public domain | W3C validator |