ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leltadd GIF version

Theorem leltadd 8173
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 8172 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 < 𝐷𝐴𝐶) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
21ancomsd 267 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
32ancom2s 538 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
43ancom1s 541 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
5 recn 7717 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 recn 7717 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 addcom 7863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
85, 6, 7syl2an 285 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
9 recn 7717 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
10 recn 7717 . . . 4 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
11 addcom 7863 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
129, 10, 11syl2an 285 . . 3 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
138, 12breqan12d 3913 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + 𝐵) < (𝐶 + 𝐷) ↔ (𝐵 + 𝐴) < (𝐷 + 𝐶)))
144, 13sylibrd 168 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463   class class class wbr 3897  (class class class)co 5740  cc 7582  cr 7583   + caddc 7587   < clt 7764  cle 7765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-pre-ltwlin 7697  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-iota 5056  df-fv 5099  df-ov 5743  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770
This theorem is referenced by:  addgegt0  8175  leltaddd  8291
  Copyright terms: Public domain W3C validator