| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5445 foco 5503 fun11iun 5537 fconstfvm 5792 isocnv 5870 f1oiso 5885 f1ocnvfv3 5923 tfrcl 6440 mapxpen 6927 findcard 6967 exmidfodomrlemim 7291 genpassl 7619 genpassu 7620 axsuploc 8127 cnegexlem3 8231 recexaplem2 8707 divap0 8739 dfinfre 9011 qreccl 9745 xrlttr 9899 addmodlteq 10524 cau3lem 11344 climcn1 11538 climcn2 11539 climcaucn 11581 ntrivcvgap 11778 rplpwr 12267 dvdssq 12271 nn0seqcvgd 12282 lcmgcdlem 12318 isprm6 12388 phiprmpw 12463 pcneg 12567 prmpwdvds 12597 4sqlem19 12651 grpinveu 13288 mulgnn0subcl 13389 mulgsubcl 13390 mhmmulg 13417 ghmmulg 13510 ringrghm 13742 dvdsrcl2 13779 crngunit 13791 dvdsrpropdg 13827 lss1d 14063 quscrng 14213 mulgghm2 14288 tgcl 14454 innei 14553 cncnp 14620 cnnei 14622 elbl2ps 14782 elbl2 14783 cncfco 14981 cnlimc 15062 |
| Copyright terms: Public domain | W3C validator |