| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5433 foco 5491 fun11iun 5525 fconstfvm 5780 isocnv 5858 f1oiso 5873 f1ocnvfv3 5911 tfrcl 6422 mapxpen 6909 findcard 6949 exmidfodomrlemim 7268 genpassl 7591 genpassu 7592 axsuploc 8099 cnegexlem3 8203 recexaplem2 8679 divap0 8711 dfinfre 8983 qreccl 9716 xrlttr 9870 addmodlteq 10490 cau3lem 11279 climcn1 11473 climcn2 11474 climcaucn 11516 ntrivcvgap 11713 rplpwr 12194 dvdssq 12198 nn0seqcvgd 12209 lcmgcdlem 12245 isprm6 12315 phiprmpw 12390 pcneg 12494 prmpwdvds 12524 4sqlem19 12578 grpinveu 13170 mulgnn0subcl 13265 mulgsubcl 13266 mhmmulg 13293 ghmmulg 13386 ringrghm 13618 dvdsrcl2 13655 crngunit 13667 dvdsrpropdg 13703 lss1d 13939 quscrng 14089 mulgghm2 14164 tgcl 14300 innei 14399 cncnp 14466 cnnei 14468 elbl2ps 14628 elbl2 14629 cncfco 14827 cnlimc 14908 | 
| Copyright terms: Public domain | W3C validator |