![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an32s | GIF version |
Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5430 foco 5488 fun11iun 5522 fconstfvm 5777 isocnv 5855 f1oiso 5870 f1ocnvfv3 5908 tfrcl 6419 mapxpen 6906 findcard 6946 exmidfodomrlemim 7263 genpassl 7586 genpassu 7587 axsuploc 8094 cnegexlem3 8198 recexaplem2 8673 divap0 8705 dfinfre 8977 qreccl 9710 xrlttr 9864 addmodlteq 10472 cau3lem 11261 climcn1 11454 climcn2 11455 climcaucn 11497 ntrivcvgap 11694 rplpwr 12167 dvdssq 12171 nn0seqcvgd 12182 lcmgcdlem 12218 isprm6 12288 phiprmpw 12363 pcneg 12466 prmpwdvds 12496 4sqlem19 12550 grpinveu 13113 mulgnn0subcl 13208 mulgsubcl 13209 mhmmulg 13236 ghmmulg 13329 ringrghm 13561 dvdsrcl2 13598 crngunit 13610 dvdsrpropdg 13646 lss1d 13882 quscrng 14032 mulgghm2 14107 tgcl 14243 innei 14342 cncnp 14409 cnnei 14411 elbl2ps 14571 elbl2 14572 cncfco 14770 cnlimc 14851 |
Copyright terms: Public domain | W3C validator |