| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5436 foco 5494 fun11iun 5528 fconstfvm 5783 isocnv 5861 f1oiso 5876 f1ocnvfv3 5914 tfrcl 6431 mapxpen 6918 findcard 6958 exmidfodomrlemim 7282 genpassl 7610 genpassu 7611 axsuploc 8118 cnegexlem3 8222 recexaplem2 8698 divap0 8730 dfinfre 9002 qreccl 9735 xrlttr 9889 addmodlteq 10509 cau3lem 11298 climcn1 11492 climcn2 11493 climcaucn 11535 ntrivcvgap 11732 rplpwr 12221 dvdssq 12225 nn0seqcvgd 12236 lcmgcdlem 12272 isprm6 12342 phiprmpw 12417 pcneg 12521 prmpwdvds 12551 4sqlem19 12605 grpinveu 13242 mulgnn0subcl 13343 mulgsubcl 13344 mhmmulg 13371 ghmmulg 13464 ringrghm 13696 dvdsrcl2 13733 crngunit 13745 dvdsrpropdg 13781 lss1d 14017 quscrng 14167 mulgghm2 14242 tgcl 14408 innei 14507 cncnp 14574 cnnei 14576 elbl2ps 14736 elbl2 14737 cncfco 14935 cnlimc 15016 |
| Copyright terms: Public domain | W3C validator |