Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an32s | GIF version |
Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 552 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anass1rs 561 anabss1 566 fssres 5362 foco 5419 fun11iun 5452 fconstfvm 5702 isocnv 5778 f1oiso 5793 f1ocnvfv3 5830 tfrcl 6328 mapxpen 6810 findcard 6850 exmidfodomrlemim 7153 genpassl 7461 genpassu 7462 axsuploc 7967 cnegexlem3 8071 recexaplem2 8545 divap0 8576 dfinfre 8847 qreccl 9576 xrlttr 9727 addmodlteq 10329 cau3lem 11052 climcn1 11245 climcn2 11246 climcaucn 11288 ntrivcvgap 11485 rplpwr 11956 dvdssq 11960 nn0seqcvgd 11969 lcmgcdlem 12005 isprm6 12075 phiprmpw 12150 pcneg 12252 prmpwdvds 12281 tgcl 12664 innei 12763 cncnp 12830 cnnei 12832 elbl2ps 12992 elbl2 12993 cncfco 13178 cnlimc 13241 |
Copyright terms: Public domain | W3C validator |