| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5436 foco 5494 fun11iun 5528 fconstfvm 5783 isocnv 5861 f1oiso 5876 f1ocnvfv3 5914 tfrcl 6431 mapxpen 6918 findcard 6958 exmidfodomrlemim 7280 genpassl 7608 genpassu 7609 axsuploc 8116 cnegexlem3 8220 recexaplem2 8696 divap0 8728 dfinfre 9000 qreccl 9733 xrlttr 9887 addmodlteq 10507 cau3lem 11296 climcn1 11490 climcn2 11491 climcaucn 11533 ntrivcvgap 11730 rplpwr 12219 dvdssq 12223 nn0seqcvgd 12234 lcmgcdlem 12270 isprm6 12340 phiprmpw 12415 pcneg 12519 prmpwdvds 12549 4sqlem19 12603 grpinveu 13240 mulgnn0subcl 13341 mulgsubcl 13342 mhmmulg 13369 ghmmulg 13462 ringrghm 13694 dvdsrcl2 13731 crngunit 13743 dvdsrpropdg 13779 lss1d 14015 quscrng 14165 mulgghm2 14240 tgcl 14384 innei 14483 cncnp 14550 cnnei 14552 elbl2ps 14712 elbl2 14713 cncfco 14911 cnlimc 14992 |
| Copyright terms: Public domain | W3C validator |