ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32s GIF version

Theorem an32s 568
Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
an32s (((𝜑𝜒) ∧ 𝜓) → 𝜃)

Proof of Theorem an32s
StepHypRef Expression
1 an32 562 . 2 (((𝜑𝜒) ∧ 𝜓) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32s.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylbi 121 1 (((𝜑𝜒) ∧ 𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anass1rs  571  anabss1  576  fssres  5393  foco  5450  fun11iun  5484  fconstfvm  5736  isocnv  5814  f1oiso  5829  f1ocnvfv3  5866  tfrcl  6367  mapxpen  6850  findcard  6890  exmidfodomrlemim  7202  genpassl  7525  genpassu  7526  axsuploc  8032  cnegexlem3  8136  recexaplem2  8611  divap0  8643  dfinfre  8915  qreccl  9644  xrlttr  9797  addmodlteq  10400  cau3lem  11125  climcn1  11318  climcn2  11319  climcaucn  11361  ntrivcvgap  11558  rplpwr  12030  dvdssq  12034  nn0seqcvgd  12043  lcmgcdlem  12079  isprm6  12149  phiprmpw  12224  pcneg  12326  prmpwdvds  12355  grpinveu  12916  mulgnn0subcl  13001  mulgsubcl  13002  mhmmulg  13029  dvdsrcl2  13273  crngunit  13285  dvdsrpropdg  13321  lss1d  13475  tgcl  13649  innei  13748  cncnp  13815  cnnei  13817  elbl2ps  13977  elbl2  13978  cncfco  14163  cnlimc  14226
  Copyright terms: Public domain W3C validator