![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an32s | GIF version |
Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anass1rs 571 anabss1 576 fssres 5393 foco 5450 fun11iun 5484 fconstfvm 5736 isocnv 5814 f1oiso 5829 f1ocnvfv3 5866 tfrcl 6367 mapxpen 6850 findcard 6890 exmidfodomrlemim 7202 genpassl 7525 genpassu 7526 axsuploc 8032 cnegexlem3 8136 recexaplem2 8611 divap0 8643 dfinfre 8915 qreccl 9644 xrlttr 9797 addmodlteq 10400 cau3lem 11125 climcn1 11318 climcn2 11319 climcaucn 11361 ntrivcvgap 11558 rplpwr 12030 dvdssq 12034 nn0seqcvgd 12043 lcmgcdlem 12079 isprm6 12149 phiprmpw 12224 pcneg 12326 prmpwdvds 12355 grpinveu 12916 mulgnn0subcl 13001 mulgsubcl 13002 mhmmulg 13029 dvdsrcl2 13273 crngunit 13285 dvdsrpropdg 13321 lss1d 13475 tgcl 13649 innei 13748 cncnp 13815 cnnei 13817 elbl2ps 13977 elbl2 13978 cncfco 14163 cnlimc 14226 |
Copyright terms: Public domain | W3C validator |