| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5463 foco 5521 fun11iun 5555 fconstfvm 5815 isocnv 5893 f1oiso 5908 f1ocnvfv3 5946 tfrcl 6463 mapxpen 6960 findcard 7000 exmidfodomrlemim 7325 genpassl 7657 genpassu 7658 axsuploc 8165 cnegexlem3 8269 recexaplem2 8745 divap0 8777 dfinfre 9049 qreccl 9783 xrlttr 9937 addmodlteq 10565 cau3lem 11500 climcn1 11694 climcn2 11695 climcaucn 11737 ntrivcvgap 11934 rplpwr 12423 dvdssq 12427 nn0seqcvgd 12438 lcmgcdlem 12474 isprm6 12544 phiprmpw 12619 pcneg 12723 prmpwdvds 12753 4sqlem19 12807 grpinveu 13445 mulgnn0subcl 13546 mulgsubcl 13547 mhmmulg 13574 ghmmulg 13667 ringrghm 13899 dvdsrcl2 13936 crngunit 13948 dvdsrpropdg 13984 lss1d 14220 quscrng 14370 mulgghm2 14445 tgcl 14611 innei 14710 cncnp 14777 cnnei 14779 elbl2ps 14939 elbl2 14940 cncfco 15138 cnlimc 15219 |
| Copyright terms: Public domain | W3C validator |