| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5450 foco 5508 fun11iun 5542 fconstfvm 5801 isocnv 5879 f1oiso 5894 f1ocnvfv3 5932 tfrcl 6449 mapxpen 6944 findcard 6984 exmidfodomrlemim 7308 genpassl 7636 genpassu 7637 axsuploc 8144 cnegexlem3 8248 recexaplem2 8724 divap0 8756 dfinfre 9028 qreccl 9762 xrlttr 9916 addmodlteq 10541 cau3lem 11367 climcn1 11561 climcn2 11562 climcaucn 11604 ntrivcvgap 11801 rplpwr 12290 dvdssq 12294 nn0seqcvgd 12305 lcmgcdlem 12341 isprm6 12411 phiprmpw 12486 pcneg 12590 prmpwdvds 12620 4sqlem19 12674 grpinveu 13312 mulgnn0subcl 13413 mulgsubcl 13414 mhmmulg 13441 ghmmulg 13534 ringrghm 13766 dvdsrcl2 13803 crngunit 13815 dvdsrpropdg 13851 lss1d 14087 quscrng 14237 mulgghm2 14312 tgcl 14478 innei 14577 cncnp 14644 cnnei 14646 elbl2ps 14806 elbl2 14807 cncfco 15005 cnlimc 15086 |
| Copyright terms: Public domain | W3C validator |