| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an32s | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 616 fssres 5500 foco 5558 fun11iun 5592 fconstfvm 5856 isocnv 5934 f1oiso 5949 f1ocnvfv3 5989 tfrcl 6508 mapxpen 7005 findcard 7046 exmidfodomrlemim 7375 genpassl 7707 genpassu 7708 axsuploc 8215 cnegexlem3 8319 recexaplem2 8795 divap0 8827 dfinfre 9099 qreccl 9833 xrlttr 9987 addmodlteq 10615 cau3lem 11620 climcn1 11814 climcn2 11815 climcaucn 11857 ntrivcvgap 12054 rplpwr 12543 dvdssq 12547 nn0seqcvgd 12558 lcmgcdlem 12594 isprm6 12664 phiprmpw 12739 pcneg 12843 prmpwdvds 12873 4sqlem19 12927 grpinveu 13566 mulgnn0subcl 13667 mulgsubcl 13668 mhmmulg 13695 ghmmulg 13788 ringrghm 14020 dvdsrcl2 14057 crngunit 14069 dvdsrpropdg 14105 lss1d 14341 quscrng 14491 mulgghm2 14566 tgcl 14732 innei 14831 cncnp 14898 cnnei 14900 elbl2ps 15060 elbl2 15061 cncfco 15259 cnlimc 15340 |
| Copyright terms: Public domain | W3C validator |