ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bilukdc GIF version

Theorem bilukdc 1391
Description: Lukasiewicz's shortest axiom for equivalential calculus (but modified to require decidable propositions). Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
bilukdc (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → ((𝜑𝜓) ↔ ((𝜒𝜓) ↔ (𝜑𝜒))))

Proof of Theorem bilukdc
StepHypRef Expression
1 bicom 139 . . . . . 6 ((𝜑𝜓) ↔ (𝜓𝜑))
21bibi1i 227 . . . . 5 (((𝜑𝜓) ↔ 𝜒) ↔ ((𝜓𝜑) ↔ 𝜒))
3 biassdc 1390 . . . . . 6 (DECID 𝜓 → (DECID 𝜑 → (DECID 𝜒 → (((𝜓𝜑) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))))))
43imp31 254 . . . . 5 (((DECID 𝜓DECID 𝜑) ∧ DECID 𝜒) → (((𝜓𝜑) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))))
52, 4syl5bb 191 . . . 4 (((DECID 𝜓DECID 𝜑) ∧ DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))))
65ancom1s 564 . . 3 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))))
7 dcbi 931 . . . . . 6 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
87imp 123 . . . . 5 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
98adantr 274 . . . 4 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜑𝜓))
10 simpr 109 . . . 4 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → DECID 𝜒)
11 dcbi 931 . . . . . 6 (DECID 𝜑 → (DECID 𝜒DECID (𝜑𝜒)))
12 dcbi 931 . . . . . 6 (DECID 𝜓 → (DECID (𝜑𝜒) → DECID (𝜓 ↔ (𝜑𝜒))))
1311, 12syl9 72 . . . . 5 (DECID 𝜑 → (DECID 𝜓 → (DECID 𝜒DECID (𝜓 ↔ (𝜑𝜒)))))
1413imp31 254 . . . 4 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜓 ↔ (𝜑𝜒)))
15 biassdc 1390 . . . 4 (DECID (𝜑𝜓) → (DECID 𝜒 → (DECID (𝜓 ↔ (𝜑𝜒)) → ((((𝜑𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))) ↔ ((𝜑𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑𝜒))))))))
169, 10, 14, 15syl3c 63 . . 3 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → ((((𝜑𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑𝜒))) ↔ ((𝜑𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑𝜒))))))
176, 16mpbid 146 . 2 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → ((𝜑𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑𝜒)))))
18 simplr 525 . . 3 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → DECID 𝜓)
1911imp 123 . . . 4 ((DECID 𝜑DECID 𝜒) → DECID (𝜑𝜒))
2019adantlr 474 . . 3 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜑𝜒))
21 biassdc 1390 . . 3 (DECID 𝜒 → (DECID 𝜓 → (DECID (𝜑𝜒) → (((𝜒𝜓) ↔ (𝜑𝜒)) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑𝜒)))))))
2210, 18, 20, 21syl3c 63 . 2 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → (((𝜒𝜓) ↔ (𝜑𝜒)) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑𝜒)))))
2317, 22bitr4d 190 1 (((DECID 𝜑DECID 𝜓) ∧ DECID 𝜒) → ((𝜑𝜓) ↔ ((𝜒𝜓) ↔ (𝜑𝜒))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator