Proof of Theorem bilukdc
Step | Hyp | Ref
| Expression |
1 | | bicom 139 |
. . . . . 6
⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
2 | 1 | bibi1i 227 |
. . . . 5
⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) |
3 | | biassdc 1385 |
. . . . . 6
⊢
(DECID 𝜓 → (DECID 𝜑 → (DECID
𝜒 → (((𝜓 ↔ 𝜑) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))))) |
4 | 3 | imp31 254 |
. . . . 5
⊢
(((DECID 𝜓 ∧ DECID 𝜑) ∧ DECID 𝜒) → (((𝜓 ↔ 𝜑) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))) |
5 | 2, 4 | syl5bb 191 |
. . . 4
⊢
(((DECID 𝜓 ∧ DECID 𝜑) ∧ DECID 𝜒) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))) |
6 | 5 | ancom1s 559 |
. . 3
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))) |
7 | | dcbi 926 |
. . . . . 6
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ↔ 𝜓))) |
8 | 7 | imp 123 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ↔ 𝜓)) |
9 | 8 | adantr 274 |
. . . 4
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜑 ↔ 𝜓)) |
10 | | simpr 109 |
. . . 4
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → DECID 𝜒) |
11 | | dcbi 926 |
. . . . . 6
⊢
(DECID 𝜑 → (DECID 𝜒 → DECID
(𝜑 ↔ 𝜒))) |
12 | | dcbi 926 |
. . . . . 6
⊢
(DECID 𝜓 → (DECID (𝜑 ↔ 𝜒) → DECID (𝜓 ↔ (𝜑 ↔ 𝜒)))) |
13 | 11, 12 | syl9 72 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → (DECID
𝜒 → DECID
(𝜓 ↔ (𝜑 ↔ 𝜒))))) |
14 | 13 | imp31 254 |
. . . 4
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜓 ↔ (𝜑 ↔ 𝜒))) |
15 | | biassdc 1385 |
. . . 4
⊢
(DECID (𝜑 ↔ 𝜓) → (DECID 𝜒 → (DECID
(𝜓 ↔ (𝜑 ↔ 𝜒)) → ((((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))) ↔ ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))))))) |
16 | 9, 10, 14, 15 | syl3c 63 |
. . 3
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → ((((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))) ↔ ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))))) |
17 | 6, 16 | mpbid 146 |
. 2
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))))) |
18 | | simplr 520 |
. . 3
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → DECID 𝜓) |
19 | 11 | imp 123 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜒) → DECID (𝜑 ↔ 𝜒)) |
20 | 19 | adantlr 469 |
. . 3
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → DECID (𝜑 ↔ 𝜒)) |
21 | | biassdc 1385 |
. . 3
⊢
(DECID 𝜒 → (DECID 𝜓 → (DECID
(𝜑 ↔ 𝜒) → (((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒)) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))))))) |
22 | 10, 18, 20, 21 | syl3c 63 |
. 2
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → (((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒)) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))))) |
23 | 17, 22 | bitr4d 190 |
1
⊢
(((DECID 𝜑 ∧ DECID 𝜓) ∧ DECID 𝜒) → ((𝜑 ↔ 𝜓) ↔ ((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒)))) |