| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anim1ci | GIF version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| anim1i.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| anim1ci | ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | anim12ci 339 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: vfermltl 12420 powm2modprm 12421 modprmn0modprm0 12425 dvdsprmpweqle 12506 ixpsnbasval 14022 logbgcd1irr 15203 | 
| Copyright terms: Public domain | W3C validator |