ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim1ci GIF version

Theorem anim1ci 339
Description: Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
anim1i.1 (𝜑𝜓)
Assertion
Ref Expression
anim1ci ((𝜑𝜒) → (𝜒𝜓))

Proof of Theorem anim1ci
StepHypRef Expression
1 anim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2anim12ci 337 1 ((𝜑𝜒) → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  vfermltl  12205  powm2modprm  12206  modprmn0modprm0  12210  dvdsprmpweqle  12290  logbgcd1irr  13679
  Copyright terms: Public domain W3C validator