| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim1ci | GIF version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| anim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| anim1ci | ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | anim12ci 339 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: vfermltl 12445 powm2modprm 12446 modprmn0modprm0 12450 dvdsprmpweqle 12531 ixpsnbasval 14098 logbgcd1irr 15287 |
| Copyright terms: Public domain | W3C validator |