![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vfermltl | GIF version |
Description: Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
vfermltl | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phiprm 12214 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) | |
2 | 1 | eqcomd 2183 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 − 1) = (ϕ‘𝑃)) |
3 | 2 | 3ad2ant1 1018 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑃 − 1) = (ϕ‘𝑃)) |
4 | 3 | oveq2d 5887 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴↑(𝑃 − 1)) = (𝐴↑(ϕ‘𝑃))) |
5 | 4 | oveq1d 5886 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = ((𝐴↑(ϕ‘𝑃)) mod 𝑃)) |
6 | prmnn 12101 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
7 | 6 | 3ad2ant1 1018 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝑃 ∈ ℕ) |
8 | simp2 998 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝐴 ∈ ℤ) | |
9 | prmz 12102 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
10 | 9 | anim1ci 341 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
11 | 10 | 3adant3 1017 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
12 | gcdcom 11965 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴)) | |
13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴)) |
14 | coprm 12135 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
15 | 14 | biimp3a 1345 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑃 gcd 𝐴) = 1) |
16 | 13, 15 | eqtrd 2210 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 gcd 𝑃) = 1) |
17 | eulerth 12224 | . . 3 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) | |
18 | 7, 8, 16, 17 | syl3anc 1238 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) |
19 | 9 | 3ad2ant1 1018 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝑃 ∈ ℤ) |
20 | zq 9621 | . . . 4 ⊢ (𝑃 ∈ ℤ → 𝑃 ∈ ℚ) | |
21 | 19, 20 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝑃 ∈ ℚ) |
22 | prmgt1 12123 | . . . 4 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
23 | 22 | 3ad2ant1 1018 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 1 < 𝑃) |
24 | q1mod 10350 | . . 3 ⊢ ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
25 | 21, 23, 24 | syl2anc 411 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (1 mod 𝑃) = 1) |
26 | 5, 18, 25 | 3eqtrd 2214 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4002 ‘cfv 5214 (class class class)co 5871 1c1 7808 < clt 7987 − cmin 8123 ℕcn 8914 ℤcz 9248 ℚcq 9614 mod cmo 10316 ↑cexp 10513 ∥ cdvds 11786 gcd cgcd 11934 ℙcprime 12098 ϕcphi 12200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7898 ax-resscn 7899 ax-1cn 7900 ax-1re 7901 ax-icn 7902 ax-addcl 7903 ax-addrcl 7904 ax-mulcl 7905 ax-mulrcl 7906 ax-addcom 7907 ax-mulcom 7908 ax-addass 7909 ax-mulass 7910 ax-distr 7911 ax-i2m1 7912 ax-0lt1 7913 ax-1rid 7914 ax-0id 7915 ax-rnegex 7916 ax-precex 7917 ax-cnre 7918 ax-pre-ltirr 7919 ax-pre-ltwlin 7920 ax-pre-lttrn 7921 ax-pre-apti 7922 ax-pre-ltadd 7923 ax-pre-mulgt0 7924 ax-pre-mulext 7925 ax-arch 7926 ax-caucvg 7927 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-f1 5219 df-fo 5220 df-f1o 5221 df-fv 5222 df-isom 5223 df-riota 5827 df-ov 5874 df-oprab 5875 df-mpo 5876 df-1st 6137 df-2nd 6138 df-recs 6302 df-irdg 6367 df-frec 6388 df-1o 6413 df-2o 6414 df-oadd 6417 df-er 6531 df-en 6737 df-dom 6738 df-fin 6739 df-sup 6979 df-pnf 7989 df-mnf 7990 df-xr 7991 df-ltxr 7992 df-le 7993 df-sub 8125 df-neg 8126 df-reap 8527 df-ap 8534 df-div 8625 df-inn 8915 df-2 8973 df-3 8974 df-4 8975 df-n0 9172 df-z 9249 df-uz 9524 df-q 9615 df-rp 9649 df-fz 10004 df-fzo 10137 df-fl 10264 df-mod 10317 df-seqfrec 10440 df-exp 10514 df-ihash 10748 df-cj 10843 df-re 10844 df-im 10845 df-rsqrt 10999 df-abs 11000 df-clim 11279 df-proddc 11551 df-dvds 11787 df-gcd 11935 df-prm 12099 df-phi 12202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |