ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  powm2modprm GIF version

Theorem powm2modprm 12199
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 524 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℙ)
2 simpr 109 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
32adantr 274 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℤ)
4 m1dvdsndvds 12195 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃𝐴))
54imp 123 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ¬ 𝑃𝐴)
6 eqid 2170 . . . . . 6 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
76modprminv 12196 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
8 simpr 109 . . . . . 6 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
98eqcomd 2176 . . . . 5 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
107, 9syl 14 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
111, 3, 5, 10syl3anc 1233 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
12 modprm1div 12194 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1)))
1312biimpar 295 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 mod 𝑃) = 1)
1413oveq1d 5866 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
1514oveq1d 5866 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
16 zq 9578 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
173, 16syl 14 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℚ)
18 prmm2nn0 12080 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
1918anim1ci 339 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
2019adantr 274 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
21 zexpcl 10484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2220, 21syl 14 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
23 prmnn 12057 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423adantr 274 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℕ)
2524adantr 274 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℕ)
2622, 25zmodcld 10294 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
2726nn0zd 9325 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ)
2825nnzd 9326 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℤ)
29 zq 9578 . . . . . 6 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
3028, 29syl 14 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℚ)
3125nngt0d 8915 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 0 < 𝑃)
32 modqmulmod 10338 . . . . 5 (((𝐴 ∈ ℚ ∧ ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3317, 27, 30, 31, 32syl22anc 1234 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3419, 21syl 14 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3534, 24zmodcld 10294 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
3635nn0cnd 9183 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3736mulid2d 7931 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
3837oveq1d 5866 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
3938adantr 274 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
40 zq 9578 . . . . . . 7 ((𝐴↑(𝑃 − 2)) ∈ ℤ → (𝐴↑(𝑃 − 2)) ∈ ℚ)
4122, 40syl 14 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴↑(𝑃 − 2)) ∈ ℚ)
42 modqabs2 10307 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4341, 30, 31, 42syl3anc 1233 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4439, 43eqtrd 2203 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4515, 33, 443eqtr3d 2211 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4611, 45eqtr2d 2204 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)
4746ex 114 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3987  (class class class)co 5851  0cc0 7767  1c1 7768   · cmul 7772   < clt 7947  cmin 8083  cn 8871  2c2 8922  0cn0 9128  cz 9205  cq 9571  ...cfz 9958   mod cmo 10271  cexp 10468  cdvds 11742  cprime 12054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-2o 6394  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-ihash 10703  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-proddc 11507  df-dvds 11743  df-gcd 11891  df-prm 12055  df-phi 12158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator