ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12ci GIF version

Theorem anim12ci 337
Description: Variant of anim12i 336 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anim12i.1 (𝜑𝜓)
anim12i.2 (𝜒𝜃)
Assertion
Ref Expression
anim12ci ((𝜑𝜒) → (𝜃𝜓))

Proof of Theorem anim12ci
StepHypRef Expression
1 anim12i.2 . . 3 (𝜒𝜃)
2 anim12i.1 . . 3 (𝜑𝜓)
31, 2anim12i 336 . 2 ((𝜒𝜑) → (𝜃𝜓))
43ancoms 266 1 ((𝜑𝜒) → (𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  anim1ci  339  dfco2a  5111  funco  5238  fliftval  5779  ltsrprg  7709  difelfznle  10091  iseqf1olemqk  10450  difsqpwdvds  12291  mhmco  12705  ex-ceil  13761
  Copyright terms: Public domain W3C validator