ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12ci GIF version

Theorem anim12ci 339
Description: Variant of anim12i 338 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anim12i.1 (𝜑𝜓)
anim12i.2 (𝜒𝜃)
Assertion
Ref Expression
anim12ci ((𝜑𝜒) → (𝜃𝜓))

Proof of Theorem anim12ci
StepHypRef Expression
1 anim12i.2 . . 3 (𝜒𝜃)
2 anim12i.1 . . 3 (𝜑𝜓)
31, 2anim12i 338 . 2 ((𝜒𝜑) → (𝜃𝜓))
43ancoms 268 1 ((𝜑𝜒) → (𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  anim1ci  341  dfco2a  5229  funco  5358  fliftval  5930  ltsrprg  7942  difelfznle  10339  nelfzo  10356  iseqf1olemqk  10737  ccatsymb  11145  pfxsuffeqwrdeq  11238  pfxccatin12lem2a  11267  difsqpwdvds  12869  resmhm  13528  mhmco  13531  rhmco  14146  resrhm  14220  gausslemma2dlem1a  15745  ex-ceil  16114
  Copyright terms: Public domain W3C validator