ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprmn0modprm0 GIF version

Theorem modprmn0modprm0 12239
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1000 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℙ)
2 prmnn 12093 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3 zmodfzo 10333 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
42, 3sylan2 286 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
54ancoms 268 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
653adant3 1017 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
7 fzo1fzo0n0 10169 . . . . . . . 8 ((𝑁 mod 𝑃) ∈ (1..^𝑃) ↔ ((𝑁 mod 𝑃) ∈ (0..^𝑃) ∧ (𝑁 mod 𝑃) ≠ 0))
87simplbi2com 1444 . . . . . . 7 ((𝑁 mod 𝑃) ≠ 0 → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
983ad2ant3 1020 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
106, 9mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
1110adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
12 simpr 110 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ (0..^𝑃))
13 nnnn0modprm0 12238 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 mod 𝑃) ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
141, 11, 12, 13syl3anc 1238 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
15 elfzoelz 10133 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℤ)
1615zcnd 9365 . . . . . . . . 9 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℂ)
172anim1ci 341 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ))
18 zmodcl 10330 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ ℕ0)
19 nn0cn 9175 . . . . . . . . . . . 12 ((𝑁 mod 𝑃) ∈ ℕ0 → (𝑁 mod 𝑃) ∈ ℂ)
2017, 18, 193syl 17 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ ℂ)
21203adant3 1017 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ ℂ)
2221adantr 276 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ ℂ)
23 mulcom 7931 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (𝑁 mod 𝑃) ∈ ℂ) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2416, 22, 23syl2anr 290 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2524oveq2d 5885 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑗 · (𝑁 mod 𝑃))) = (𝐼 + ((𝑁 mod 𝑃) · 𝑗)))
2625oveq1d 5884 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃))
27 elfzoelz 10133 . . . . . . . . 9 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℤ)
2827ad2antlr 489 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℤ)
29 zq 9615 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℚ)
3028, 29syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℚ)
31 simpll2 1037 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℤ)
32 zq 9615 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
3331, 32syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℚ)
3415adantl 277 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℤ)
3523ad2ant1 1018 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℕ)
3635ad2antrr 488 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℕ)
37 nnq 9622 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
3836, 37syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℚ)
392nnrpd 9681 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
40393ad2ant1 1018 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℝ+)
4140ad2antrr 488 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
4241rpgt0d 9686 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 0 < 𝑃)
43 modqaddmulmod 10377 . . . . . . 7 (((𝐼 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 𝑗 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
4430, 33, 34, 38, 42, 43syl32anc 1246 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
45 zcn 9247 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4645adantr 276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℂ)
4716adantl 277 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℂ)
4846, 47mulcomd 7969 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
4948ex 115 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
50493ad2ant2 1019 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
5150adantr 276 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
5251imp 124 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
5352oveq2d 5885 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑁 · 𝑗)) = (𝐼 + (𝑗 · 𝑁)))
5453oveq1d 5884 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑁 · 𝑗)) mod 𝑃) = ((𝐼 + (𝑗 · 𝑁)) mod 𝑃))
5526, 44, 543eqtrrd 2215 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃))
5655eqeq1d 2186 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5756rexbidva 2474 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5814, 57mpbird 167 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
5958ex 115 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wne 2347  wrex 2456   class class class wbr 4000  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cn 8908  0cn0 9165  cz 9242  cq 9608  +crp 9640  ..^cfzo 10128   mod cmo 10308  cprime 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator