ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprmn0modprm0 GIF version

Theorem modprmn0modprm0 12745
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1005 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℙ)
2 prmnn 12598 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3 zmodfzo 10536 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
42, 3sylan2 286 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
54ancoms 268 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
653adant3 1022 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
7 fzo1fzo0n0 10351 . . . . . . . 8 ((𝑁 mod 𝑃) ∈ (1..^𝑃) ↔ ((𝑁 mod 𝑃) ∈ (0..^𝑃) ∧ (𝑁 mod 𝑃) ≠ 0))
87simplbi2com 1467 . . . . . . 7 ((𝑁 mod 𝑃) ≠ 0 → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
983ad2ant3 1025 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
106, 9mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
1110adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
12 simpr 110 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ (0..^𝑃))
13 nnnn0modprm0 12744 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 mod 𝑃) ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
141, 11, 12, 13syl3anc 1252 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
15 elfzoelz 10311 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℤ)
1615zcnd 9538 . . . . . . . . 9 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℂ)
172anim1ci 341 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ))
18 zmodcl 10533 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ ℕ0)
19 nn0cn 9347 . . . . . . . . . . . 12 ((𝑁 mod 𝑃) ∈ ℕ0 → (𝑁 mod 𝑃) ∈ ℂ)
2017, 18, 193syl 17 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ ℂ)
21203adant3 1022 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ ℂ)
2221adantr 276 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ ℂ)
23 mulcom 8096 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (𝑁 mod 𝑃) ∈ ℂ) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2416, 22, 23syl2anr 290 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2524oveq2d 5990 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑗 · (𝑁 mod 𝑃))) = (𝐼 + ((𝑁 mod 𝑃) · 𝑗)))
2625oveq1d 5989 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃))
27 elfzoelz 10311 . . . . . . . . 9 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℤ)
2827ad2antlr 489 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℤ)
29 zq 9789 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℚ)
3028, 29syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℚ)
31 simpll2 1042 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℤ)
32 zq 9789 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
3331, 32syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℚ)
3415adantl 277 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℤ)
3523ad2ant1 1023 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℕ)
3635ad2antrr 488 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℕ)
37 nnq 9796 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
3836, 37syl 14 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℚ)
392nnrpd 9858 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
40393ad2ant1 1023 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℝ+)
4140ad2antrr 488 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
4241rpgt0d 9863 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 0 < 𝑃)
43 modqaddmulmod 10580 . . . . . . 7 (((𝐼 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 𝑗 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
4430, 33, 34, 38, 42, 43syl32anc 1260 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
45 zcn 9419 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4645adantr 276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℂ)
4716adantl 277 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℂ)
4846, 47mulcomd 8136 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
4948ex 115 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
50493ad2ant2 1024 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
5150adantr 276 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
5251imp 124 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
5352oveq2d 5990 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑁 · 𝑗)) = (𝐼 + (𝑗 · 𝑁)))
5453oveq1d 5989 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑁 · 𝑗)) mod 𝑃) = ((𝐼 + (𝑗 · 𝑁)) mod 𝑃))
5526, 44, 543eqtrrd 2247 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃))
5655eqeq1d 2218 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5756rexbidva 2507 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5814, 57mpbird 167 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
5958ex 115 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wne 2380  wrex 2489   class class class wbr 4062  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cn 9078  0cn0 9337  cz 9414  cq 9782  +crp 9817  ..^cfzo 10306   mod cmo 10511  cprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator