ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqle GIF version

Theorem dvdsprmpweqle 12475
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 12473 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
21imp 124 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
3 simplr 528 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛 ∈ ℕ0)
43nn0zd 9437 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛 ∈ ℤ)
5 simp3 1001 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
65ad3antrrr 492 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑁 ∈ ℕ0)
76nn0zd 9437 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑁 ∈ ℤ)
8 zlelttric 9362 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑁 < 𝑛))
94, 7, 8syl2anc 411 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝑁 < 𝑛))
10 breq1 4032 . . . . . . . . . . . . . . . 16 (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
1110adantl 277 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
12 prmnn 12248 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1312nnnn0d 9293 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
14133ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ0)
1514adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℕ0)
16 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
1715, 16nn0expcld 10767 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ0)
1817nn0zd 9437 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
1912nncnd 8996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
20193ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℂ)
2120adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℂ)
2212nnap0d 9028 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 # 0)
23223ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 # 0)
2423adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 # 0)
25 nn0z 9337 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
2625adantl 277 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
2721, 24, 26expap0d 10750 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) # 0)
28 0zd 9329 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℤ)
29 zapne 9391 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑛) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑃𝑛) # 0 ↔ (𝑃𝑛) ≠ 0))
3018, 28, 29syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) # 0 ↔ (𝑃𝑛) ≠ 0))
3127, 30mpbid 147 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ≠ 0)
325adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3315, 32nn0expcld 10767 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ0)
3433nn0zd 9437 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℤ)
35 dvdsval2 11933 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0 ∧ (𝑃𝑁) ∈ ℤ) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3618, 31, 34, 35syl3anc 1249 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3732nn0zd 9437 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
3821, 24, 26, 37expsubapd 10755 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃↑(𝑁𝑛)) = ((𝑃𝑁) / (𝑃𝑛)))
3938eqcomd 2199 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4039eleq1d 2262 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ ↔ (𝑃↑(𝑁𝑛)) ∈ ℤ))
4121adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℂ)
4224adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 # 0)
43 nn0cn 9250 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
44433ad2ant3 1022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
46 nn0cn 9250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4746adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
4845, 47subcld 8330 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁𝑛) ∈ ℂ)
4948adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁𝑛) ∈ ℂ)
5044, 46anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
5150adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
52 negsubdi2 8278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ) → -(𝑁𝑛) = (𝑛𝑁))
5351, 52syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) = (𝑛𝑁))
545anim1ci 341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
55 ltsubnn0 9384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5654, 55syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5756imp 124 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ0)
5853, 57eqeltrd 2270 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) ∈ ℕ0)
59 expineg2 10619 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ ((𝑁𝑛) ∈ ℂ ∧ -(𝑁𝑛) ∈ ℕ0)) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6041, 42, 49, 58, 59syl22anc 1250 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6160eleq1d 2262 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ ↔ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ))
6212nnred 8995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
63623ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
6463adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℝ)
6564adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℝ)
6665, 57reexpcld 10761 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑛𝑁)) ∈ ℝ)
67 nn0z 9337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
68673ad2ant3 1022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
6968, 25anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
70 znnsub 9368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7169, 70syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7271biimpa 296 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ)
73 prmgt1 12270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 1 < 𝑃)
74733ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 < 𝑃)
7574adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 1 < 𝑃)
7675adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < 𝑃)
77 expgt1 10648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑛𝑁) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑛𝑁)))
7865, 72, 76, 77syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < (𝑃↑(𝑛𝑁)))
7966, 78jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁))))
80 oveq2 5926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-(𝑁𝑛) = (𝑛𝑁) → (𝑃↑-(𝑁𝑛)) = (𝑃↑(𝑛𝑁)))
8180eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ↔ (𝑃↑(𝑛𝑁)) ∈ ℝ))
8280breq2d 4041 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → (1 < (𝑃↑-(𝑁𝑛)) ↔ 1 < (𝑃↑(𝑛𝑁))))
8381, 82anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-(𝑁𝑛) = (𝑛𝑁) → (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) ↔ ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁)))))
8479, 83syl5ibrcom 157 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛)))))
8553, 84mpd 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))))
86 recnz 9410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8785, 86syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8887pm2.21d 620 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ → 𝑛𝑁))
8961, 88sylbid 150 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁))
9089ex 115 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁)))
9190com23 78 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9240, 91sylbid 150 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9336, 92sylbid 150 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9493adantr 276 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9511, 94sylbid 150 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9695ex 115 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁))))
9796com23 78 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁))))
9897ex 115 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9998com23 78 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝑛 ∈ ℕ0 → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
10099imp41 353 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑁 < 𝑛𝑛𝑁))
101100com12 30 . . . . . . . 8 (𝑁 < 𝑛 → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
102101jao1i 797 . . . . . . 7 ((𝑛𝑁𝑁 < 𝑛) → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
1039, 102mpcom 36 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁)
104 simpr 110 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝐴 = (𝑃𝑛))
105103, 104jca 306 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝐴 = (𝑃𝑛)))
106105ex 115 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝑛𝑁𝐴 = (𝑃𝑛))))
107106reximdva 2596 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
1082, 107mpd 13 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛)))
109108ex 115 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wne 2364  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   < clt 8054  cle 8055  cmin 8190  -cneg 8191   # cap 8600   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cexp 10609  cdvds 11930  cprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator