ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim1ci Unicode version

Theorem anim1ci 339
Description: Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
anim1i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
anim1ci  |-  ( (
ph  /\  ch )  ->  ( ch  /\  ps ) )

Proof of Theorem anim1ci
StepHypRef Expression
1 anim1i.1 . 2  |-  ( ph  ->  ps )
2 id 19 . 2  |-  ( ch 
->  ch )
31, 2anim12ci 337 1  |-  ( (
ph  /\  ch )  ->  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  vfermltl  12179  powm2modprm  12180  modprmn0modprm0  12184  dvdsprmpweqle  12264  logbgcd1irr  13485
  Copyright terms: Public domain W3C validator