Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
4 | 3 | ibi 175 | . 2 ⊢ (𝜑 → 𝜒) |
5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
7 | 6 | ibir 176 | . 2 ⊢ (𝜒 → 𝜑) |
8 | 4, 7 | impbii 125 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anxordi 1395 elrabf 2884 sbcco 2976 sbc5 2978 sbcan 2997 sbcor 2999 sbcal 3006 sbcex2 3008 sbcel1v 3017 eldif 3130 elun 3268 elin 3310 eluni 3799 eliun 3877 elopab 4243 opelopabsb 4245 opeliunxp 4666 opeliunxp2 4751 elxp4 5098 elxp5 5099 fsn2 5670 isocnv2 5791 elxp6 6148 elxp7 6149 opeliunxp2f 6217 brtpos2 6230 tpostpos 6243 ecdmn0m 6555 elixpsn 6713 bren 6725 omniwomnimkv 7143 elinp 7436 recexprlemell 7584 recexprlemelu 7585 gt0srpr 7710 ltresr 7801 eluz2 9493 elfz2 9972 rexanuz2 10955 even2n 11833 infssuzex 11904 infpn2 12411 istopon 12805 ishmeo 13098 ismet2 13148 |
Copyright terms: Public domain | W3C validator |