Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
4 | 3 | ibi 175 | . 2 ⊢ (𝜑 → 𝜒) |
5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
7 | 6 | ibir 176 | . 2 ⊢ (𝜒 → 𝜑) |
8 | 4, 7 | impbii 125 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anxordi 1390 elrabf 2880 sbcco 2972 sbc5 2974 sbcan 2993 sbcor 2995 sbcal 3002 sbcex2 3004 sbcel1v 3013 eldif 3125 elun 3263 elin 3305 eluni 3792 eliun 3870 elopab 4236 opelopabsb 4238 opeliunxp 4659 opeliunxp2 4744 elxp4 5091 elxp5 5092 fsn2 5659 isocnv2 5780 elxp6 6137 elxp7 6138 opeliunxp2f 6206 brtpos2 6219 tpostpos 6232 ecdmn0m 6543 elixpsn 6701 bren 6713 omniwomnimkv 7131 elinp 7415 recexprlemell 7563 recexprlemelu 7564 gt0srpr 7689 ltresr 7780 eluz2 9472 elfz2 9951 rexanuz2 10933 even2n 11811 infssuzex 11882 infpn2 12389 istopon 12661 ishmeo 12954 ismet2 13004 |
Copyright terms: Public domain | W3C validator |