| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
| 7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1442 elrabf 2957 sbcco 3050 sbc5 3052 sbcan 3071 sbcor 3073 sbcal 3080 sbcex2 3082 sbcel1v 3091 eldif 3206 elun 3345 elin 3387 elif 3614 eluni 3891 eliun 3969 elopab 4346 opelopabsb 4348 opeliunxp 4774 opeliunxp2 4862 elxp4 5216 elxp5 5217 fsn2 5811 isocnv2 5942 elxp6 6321 elxp7 6322 opeliunxp2f 6390 brtpos2 6403 tpostpos 6416 ecdmn0m 6732 elixpsn 6890 bren 6903 omniwomnimkv 7342 elinp 7669 recexprlemell 7817 recexprlemelu 7818 gt0srpr 7943 ltresr 8034 eluz2 9736 elfz2 10219 infssuzex 10461 rexanuz2 11510 even2n 12393 infpn2 13035 xpsfrnel2 13387 issubg 13718 isnsg 13747 issrg 13936 iscrng2 13986 isrim0 14133 issubrng 14171 issubrg 14193 rrgval 14234 islssm 14329 islidlm 14451 2idlval 14474 2idlelb 14477 istopon 14695 ishmeo 14986 ismet2 15036 istrl 16104 |
| Copyright terms: Public domain | W3C validator |