| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
| 7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1411 elrabf 2918 sbcco 3011 sbc5 3013 sbcan 3032 sbcor 3034 sbcal 3041 sbcex2 3043 sbcel1v 3052 eldif 3166 elun 3305 elin 3347 eluni 3843 eliun 3921 elopab 4293 opelopabsb 4295 opeliunxp 4719 opeliunxp2 4807 elxp4 5158 elxp5 5159 fsn2 5739 isocnv2 5862 elxp6 6236 elxp7 6237 opeliunxp2f 6305 brtpos2 6318 tpostpos 6331 ecdmn0m 6645 elixpsn 6803 bren 6815 omniwomnimkv 7242 elinp 7560 recexprlemell 7708 recexprlemelu 7709 gt0srpr 7834 ltresr 7925 eluz2 9626 elfz2 10109 infssuzex 10342 rexanuz2 11175 even2n 12058 infpn2 12700 xpsfrnel2 13050 issubg 13381 isnsg 13410 issrg 13599 iscrng2 13649 isrim0 13795 issubrng 13833 issubrg 13855 rrgval 13896 islssm 13991 islidlm 14113 2idlval 14136 2idlelb 14139 istopon 14357 ishmeo 14648 ismet2 14698 |
| Copyright terms: Public domain | W3C validator |