ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21nii GIF version

Theorem pm5.21nii 709
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ni.1 (𝜑𝜓)
pm5.21ni.2 (𝜒𝜓)
pm5.21nii.3 (𝜓 → (𝜑𝜒))
Assertion
Ref Expression
pm5.21nii (𝜑𝜒)

Proof of Theorem pm5.21nii
StepHypRef Expression
1 pm5.21ni.1 . . . 4 (𝜑𝜓)
2 pm5.21nii.3 . . . 4 (𝜓 → (𝜑𝜒))
31, 2syl 14 . . 3 (𝜑 → (𝜑𝜒))
43ibi 176 . 2 (𝜑𝜒)
5 pm5.21ni.2 . . . 4 (𝜒𝜓)
65, 2syl 14 . . 3 (𝜒 → (𝜑𝜒))
76ibir 177 . 2 (𝜒𝜑)
84, 7impbii 126 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anxordi  1442  elrabf  2957  sbcco  3050  sbc5  3052  sbcan  3071  sbcor  3073  sbcal  3080  sbcex2  3082  sbcel1v  3091  eldif  3206  elun  3345  elin  3387  elif  3614  eluni  3890  eliun  3968  elopab  4345  opelopabsb  4347  opeliunxp  4771  opeliunxp2  4859  elxp4  5212  elxp5  5213  fsn2  5802  isocnv2  5929  elxp6  6305  elxp7  6306  opeliunxp2f  6374  brtpos2  6387  tpostpos  6400  ecdmn0m  6714  elixpsn  6872  bren  6885  omniwomnimkv  7322  elinp  7649  recexprlemell  7797  recexprlemelu  7798  gt0srpr  7923  ltresr  8014  eluz2  9716  elfz2  10199  infssuzex  10440  rexanuz2  11488  even2n  12371  infpn2  13013  xpsfrnel2  13365  issubg  13696  isnsg  13725  issrg  13914  iscrng2  13964  isrim0  14110  issubrng  14148  issubrg  14170  rrgval  14211  islssm  14306  islidlm  14428  2idlval  14451  2idlelb  14454  istopon  14672  ishmeo  14963  ismet2  15013
  Copyright terms: Public domain W3C validator