| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
| 7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1442 elrabf 2957 sbcco 3050 sbc5 3052 sbcan 3071 sbcor 3073 sbcal 3080 sbcex2 3082 sbcel1v 3091 eldif 3206 elun 3345 elin 3387 elif 3614 eluni 3890 eliun 3968 elopab 4345 opelopabsb 4347 opeliunxp 4771 opeliunxp2 4859 elxp4 5212 elxp5 5213 fsn2 5802 isocnv2 5929 elxp6 6305 elxp7 6306 opeliunxp2f 6374 brtpos2 6387 tpostpos 6400 ecdmn0m 6714 elixpsn 6872 bren 6885 omniwomnimkv 7322 elinp 7649 recexprlemell 7797 recexprlemelu 7798 gt0srpr 7923 ltresr 8014 eluz2 9716 elfz2 10199 infssuzex 10440 rexanuz2 11488 even2n 12371 infpn2 13013 xpsfrnel2 13365 issubg 13696 isnsg 13725 issrg 13914 iscrng2 13964 isrim0 14110 issubrng 14148 issubrg 14170 rrgval 14211 islssm 14306 islidlm 14428 2idlval 14451 2idlelb 14454 istopon 14672 ishmeo 14963 ismet2 15013 |
| Copyright terms: Public domain | W3C validator |