![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anxordi 1400 elrabf 2893 sbcco 2986 sbc5 2988 sbcan 3007 sbcor 3009 sbcal 3016 sbcex2 3018 sbcel1v 3027 eldif 3140 elun 3278 elin 3320 eluni 3814 eliun 3892 elopab 4260 opelopabsb 4262 opeliunxp 4683 opeliunxp2 4769 elxp4 5118 elxp5 5119 fsn2 5692 isocnv2 5815 elxp6 6172 elxp7 6173 opeliunxp2f 6241 brtpos2 6254 tpostpos 6267 ecdmn0m 6579 elixpsn 6737 bren 6749 omniwomnimkv 7167 elinp 7475 recexprlemell 7623 recexprlemelu 7624 gt0srpr 7749 ltresr 7840 eluz2 9536 elfz2 10017 rexanuz2 11002 even2n 11881 infssuzex 11952 infpn2 12459 xpsfrnel2 12770 issubg 13038 isnsg 13067 issrg 13153 iscrng2 13203 issubrg 13347 istopon 13598 ishmeo 13889 ismet2 13939 |
Copyright terms: Public domain | W3C validator |