| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
| 7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1420 elrabf 2929 sbcco 3022 sbc5 3024 sbcan 3043 sbcor 3045 sbcal 3052 sbcex2 3054 sbcel1v 3063 eldif 3177 elun 3316 elin 3358 eluni 3856 eliun 3934 elopab 4309 opelopabsb 4311 opeliunxp 4735 opeliunxp2 4823 elxp4 5176 elxp5 5177 fsn2 5764 isocnv2 5891 elxp6 6265 elxp7 6266 opeliunxp2f 6334 brtpos2 6347 tpostpos 6360 ecdmn0m 6674 elixpsn 6832 bren 6845 omniwomnimkv 7281 elinp 7600 recexprlemell 7748 recexprlemelu 7749 gt0srpr 7874 ltresr 7965 eluz2 9667 elfz2 10150 infssuzex 10389 rexanuz2 11352 even2n 12235 infpn2 12877 xpsfrnel2 13228 issubg 13559 isnsg 13588 issrg 13777 iscrng2 13827 isrim0 13973 issubrng 14011 issubrg 14033 rrgval 14074 islssm 14169 islidlm 14291 2idlval 14314 2idlelb 14317 istopon 14535 ishmeo 14826 ismet2 14876 |
| Copyright terms: Public domain | W3C validator |