![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
4 | 3 | ibi 176 | . 2 ⊢ (𝜑 → 𝜒) |
5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
7 | 6 | ibir 177 | . 2 ⊢ (𝜒 → 𝜑) |
8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anxordi 1411 elrabf 2914 sbcco 3007 sbc5 3009 sbcan 3028 sbcor 3030 sbcal 3037 sbcex2 3039 sbcel1v 3048 eldif 3162 elun 3300 elin 3342 eluni 3838 eliun 3916 elopab 4288 opelopabsb 4290 opeliunxp 4714 opeliunxp2 4802 elxp4 5153 elxp5 5154 fsn2 5732 isocnv2 5855 elxp6 6222 elxp7 6223 opeliunxp2f 6291 brtpos2 6304 tpostpos 6317 ecdmn0m 6631 elixpsn 6789 bren 6801 omniwomnimkv 7226 elinp 7534 recexprlemell 7682 recexprlemelu 7683 gt0srpr 7808 ltresr 7899 eluz2 9598 elfz2 10081 rexanuz2 11135 even2n 12015 infssuzex 12086 infpn2 12613 xpsfrnel2 12929 issubg 13243 isnsg 13272 issrg 13461 iscrng2 13511 isrim0 13657 issubrng 13695 issubrg 13717 rrgval 13758 islssm 13853 islidlm 13975 2idlval 13998 2idlelb 14001 istopon 14181 ishmeo 14472 ismet2 14522 |
Copyright terms: Public domain | W3C validator |