| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 611 bianabs 613 baib 924 baibd 928 anxordi 1442 euan 2134 eueq3dc 2977 ifandc 3643 xpcom 5275 fvopab3g 5709 riota1a 5981 opabfi 7108 ctssdccl 7286 2omotaplemap 7451 recmulnqg 7586 ltexprlemloc 7802 mul0eqap 8825 eluz2 9736 rpnegap 9890 elfz2 10219 zmodid2 10582 shftfib 11342 dvdsssfz1 12371 modremain 12448 ctiunctlemudc 13016 issubg 13718 resgrpisgrp 13740 qusecsub 13876 issubrng 14171 issubrg 14193 txcnmpt 14955 reopnap 15228 ellimc3apf 15342 2omap 16388 |
| Copyright terms: Public domain | W3C validator |