ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibar GIF version

Theorem ibar 301
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.)
Assertion
Ref Expression
ibar (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem ibar
StepHypRef Expression
1 pm3.2 139 . 2 (𝜑 → (𝜓 → (𝜑𝜓)))
2 simpr 110 . 2 ((𝜑𝜓) → 𝜓)
31, 2impbid1 142 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantrur  303  biantrurd  305  anclb  319  pm5.42  320  pm5.32  453  anabs5  573  pm5.33  609  bianabs  611  baib  920  baibd  924  anxordi  1410  euan  2092  eueq3dc  2923  ifandc  3584  xpcom  5187  fvopab3g  5602  riota1a  5863  ctssdccl  7124  2omotaplemap  7270  recmulnqg  7404  ltexprlemloc  7620  mul0eqap  8641  eluz2  9548  rpnegap  9700  elfz2  10029  zmodid2  10366  shftfib  10846  dvdsssfz1  11872  modremain  11948  phisum  12254  ctiunctlemudc  12452  issubg  13065  resgrpisgrp  13087  qusecsub  13166  issubrng  13419  issubrg  13441  txcnmpt  14069  reopnap  14334  ellimc3apf  14425
  Copyright terms: Public domain W3C validator