![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibar | GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1410 euan 2092 eueq3dc 2923 ifandc 3584 xpcom 5187 fvopab3g 5602 riota1a 5863 ctssdccl 7124 2omotaplemap 7270 recmulnqg 7404 ltexprlemloc 7620 mul0eqap 8641 eluz2 9548 rpnegap 9700 elfz2 10029 zmodid2 10366 shftfib 10846 dvdsssfz1 11872 modremain 11948 phisum 12254 ctiunctlemudc 12452 issubg 13065 resgrpisgrp 13087 qusecsub 13166 issubrng 13419 issubrg 13441 txcnmpt 14069 reopnap 14334 ellimc3apf 14425 |
Copyright terms: Public domain | W3C validator |