Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ibar | GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 138 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 141 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biantrur 301 biantrurd 303 anclb 317 pm5.42 318 pm5.32 449 anabs5 563 pm5.33 599 bianabs 601 baib 909 baibd 913 anxordi 1390 euan 2070 eueq3dc 2900 ifandc 3557 xpcom 5150 fvopab3g 5559 riota1a 5817 ctssdccl 7076 recmulnqg 7332 ltexprlemloc 7548 mul0eqap 8567 eluz2 9472 rpnegap 9622 elfz2 9951 zmodid2 10287 shftfib 10765 dvdsssfz1 11790 modremain 11866 phisum 12172 ctiunctlemudc 12370 txcnmpt 12913 reopnap 13178 ellimc3apf 13269 |
Copyright terms: Public domain | W3C validator |