Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ibar | GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 138 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 141 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biantrur 301 biantrurd 303 anclb 317 pm5.42 318 pm5.32 450 anabs5 568 pm5.33 604 bianabs 606 baib 914 baibd 918 anxordi 1395 euan 2075 eueq3dc 2904 ifandc 3562 xpcom 5155 fvopab3g 5567 riota1a 5826 ctssdccl 7085 recmulnqg 7342 ltexprlemloc 7558 mul0eqap 8577 eluz2 9482 rpnegap 9632 elfz2 9961 zmodid2 10297 shftfib 10776 dvdsssfz1 11801 modremain 11877 phisum 12183 ctiunctlemudc 12381 txcnmpt 13028 reopnap 13293 ellimc3apf 13384 |
Copyright terms: Public domain | W3C validator |