| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1411 euan 2101 eueq3dc 2938 ifandc 3600 xpcom 5217 fvopab3g 5637 riota1a 5900 opabfi 7008 ctssdccl 7186 2omotaplemap 7342 recmulnqg 7477 ltexprlemloc 7693 mul0eqap 8716 eluz2 9626 rpnegap 9780 elfz2 10109 zmodid2 10463 shftfib 11007 dvdsssfz1 12036 modremain 12113 ctiunctlemudc 12681 issubg 13381 resgrpisgrp 13403 qusecsub 13539 issubrng 13833 issubrg 13855 txcnmpt 14617 reopnap 14890 ellimc3apf 15004 2omap 15750 |
| Copyright terms: Public domain | W3C validator |