| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1411 euan 2101 eueq3dc 2938 ifandc 3600 xpcom 5217 fvopab3g 5637 riota1a 5900 opabfi 7008 ctssdccl 7186 2omotaplemap 7340 recmulnqg 7475 ltexprlemloc 7691 mul0eqap 8714 eluz2 9624 rpnegap 9778 elfz2 10107 zmodid2 10461 shftfib 11005 dvdsssfz1 12034 modremain 12111 ctiunctlemudc 12679 issubg 13379 resgrpisgrp 13401 qusecsub 13537 issubrng 13831 issubrg 13853 txcnmpt 14593 reopnap 14866 ellimc3apf 14980 2omap 15726 |
| Copyright terms: Public domain | W3C validator |