| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 611 bianabs 613 baib 924 baibd 928 anxordi 1442 euan 2134 eueq3dc 2977 ifandc 3643 xpcom 5271 fvopab3g 5700 riota1a 5968 opabfi 7088 ctssdccl 7266 2omotaplemap 7431 recmulnqg 7566 ltexprlemloc 7782 mul0eqap 8805 eluz2 9716 rpnegap 9870 elfz2 10199 zmodid2 10561 shftfib 11320 dvdsssfz1 12349 modremain 12426 ctiunctlemudc 12994 issubg 13696 resgrpisgrp 13718 qusecsub 13854 issubrng 14148 issubrg 14170 txcnmpt 14932 reopnap 15205 ellimc3apf 15319 2omap 16290 |
| Copyright terms: Public domain | W3C validator |