![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibar | GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 919 baibd 923 anxordi 1400 euan 2082 eueq3dc 2911 ifandc 3572 xpcom 5175 fvopab3g 5589 riota1a 5849 ctssdccl 7109 2omotaplemap 7255 recmulnqg 7389 ltexprlemloc 7605 mul0eqap 8626 eluz2 9533 rpnegap 9685 elfz2 10014 zmodid2 10351 shftfib 10831 dvdsssfz1 11857 modremain 11933 phisum 12239 ctiunctlemudc 12437 issubg 13031 resgrpisgrp 13053 issubrg 13340 txcnmpt 13743 reopnap 14008 ellimc3apf 14099 |
Copyright terms: Public domain | W3C validator |