![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibar | GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1411 euan 2098 eueq3dc 2935 ifandc 3596 xpcom 5213 fvopab3g 5631 riota1a 5894 opabfi 6994 ctssdccl 7172 2omotaplemap 7319 recmulnqg 7453 ltexprlemloc 7669 mul0eqap 8691 eluz2 9601 rpnegap 9755 elfz2 10084 zmodid2 10426 shftfib 10970 dvdsssfz1 11997 modremain 12073 phisum 12381 ctiunctlemudc 12597 issubg 13246 resgrpisgrp 13268 qusecsub 13404 issubrng 13698 issubrg 13720 txcnmpt 14452 reopnap 14725 ellimc3apf 14839 |
Copyright terms: Public domain | W3C validator |