| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 921 baibd 925 anxordi 1420 euan 2111 eueq3dc 2951 ifandc 3614 xpcom 5237 fvopab3g 5664 riota1a 5931 opabfi 7049 ctssdccl 7227 2omotaplemap 7384 recmulnqg 7519 ltexprlemloc 7735 mul0eqap 8758 eluz2 9669 rpnegap 9823 elfz2 10152 zmodid2 10514 shftfib 11204 dvdsssfz1 12233 modremain 12310 ctiunctlemudc 12878 issubg 13579 resgrpisgrp 13601 qusecsub 13737 issubrng 14031 issubrg 14053 txcnmpt 14815 reopnap 15088 ellimc3apf 15202 2omap 16067 |
| Copyright terms: Public domain | W3C validator |