Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdex GIF version

Axiom ax-bdex 13354
Description: A bounded existential quantification of a bounded formula is bounded. Note the disjoint variable condition on 𝑥, 𝑦. (Contributed by BJ, 25-Sep-2019.)
Hypothesis
Ref Expression
bdal.1 BOUNDED 𝜑
Assertion
Ref Expression
ax-bdex BOUNDED𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Detailed syntax breakdown of Axiom ax-bdex
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . . 4 setvar 𝑦
43cv 1334 . . 3 class 𝑦
51, 2, 4wrex 2436 . 2 wff 𝑥𝑦 𝜑
65wbd 13347 1 wff BOUNDED𝑥𝑦 𝜑
Colors of variables: wff set class
This axiom is referenced by:  bj-bdcel  13372  bdreu  13390  bdrmo  13391  bdcuni  13411  bdciun  13413  bj-axun2  13450  bj-nn0suc0  13485
  Copyright terms: Public domain W3C validator