Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo GIF version

Theorem bdrmo 16177
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED 𝜑
Assertion
Ref Expression
bdrmo BOUNDED ∃*𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED 𝜑
21ax-bdex 16140 . . 3 BOUNDED𝑥𝑦 𝜑
31bdreu 16176 . . 3 BOUNDED ∃!𝑥𝑦 𝜑
42, 3ax-bdim 16135 . 2 BOUNDED (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑)
5 rmo5 2752 . 2 (∃*𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑))
64, 5bd0r 16146 1 BOUNDED ∃*𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2509  ∃!wreu 2510  ∃*wrmo 2511  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdim 16135  ax-bdan 16136  ax-bdal 16139  ax-bdex 16140  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator