Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo GIF version

Theorem bdrmo 15502
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED 𝜑
Assertion
Ref Expression
bdrmo BOUNDED ∃*𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED 𝜑
21ax-bdex 15465 . . 3 BOUNDED𝑥𝑦 𝜑
31bdreu 15501 . . 3 BOUNDED ∃!𝑥𝑦 𝜑
42, 3ax-bdim 15460 . 2 BOUNDED (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑)
5 rmo5 2717 . 2 (∃*𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑))
64, 5bd0r 15471 1 BOUNDED ∃*𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2476  ∃!wreu 2477  ∃*wrmo 2478  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdim 15460  ax-bdan 15461  ax-bdal 15464  ax-bdex 15465  ax-bdeq 15466
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-cleq 2189  df-clel 2192  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator