![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrmo | GIF version |
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdrmo.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bdrmo | ⊢ BOUNDED ∃*𝑥 ∈ 𝑦 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdrmo.1 | . . . 4 ⊢ BOUNDED 𝜑 | |
2 | 1 | ax-bdex 15311 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝜑 |
3 | 1 | bdreu 15347 | . . 3 ⊢ BOUNDED ∃!𝑥 ∈ 𝑦 𝜑 |
4 | 2, 3 | ax-bdim 15306 | . 2 ⊢ BOUNDED (∃𝑥 ∈ 𝑦 𝜑 → ∃!𝑥 ∈ 𝑦 𝜑) |
5 | rmo5 2714 | . 2 ⊢ (∃*𝑥 ∈ 𝑦 𝜑 ↔ (∃𝑥 ∈ 𝑦 𝜑 → ∃!𝑥 ∈ 𝑦 𝜑)) | |
6 | 4, 5 | bd0r 15317 | 1 ⊢ BOUNDED ∃*𝑥 ∈ 𝑦 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wrex 2473 ∃!wreu 2474 ∃*wrmo 2475 BOUNDED wbd 15304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15305 ax-bdim 15306 ax-bdan 15307 ax-bdal 15310 ax-bdex 15311 ax-bdeq 15312 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-cleq 2186 df-clel 2189 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |