Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo GIF version

Theorem bdrmo 15930
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED 𝜑
Assertion
Ref Expression
bdrmo BOUNDED ∃*𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED 𝜑
21ax-bdex 15893 . . 3 BOUNDED𝑥𝑦 𝜑
31bdreu 15929 . . 3 BOUNDED ∃!𝑥𝑦 𝜑
42, 3ax-bdim 15888 . 2 BOUNDED (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑)
5 rmo5 2727 . 2 (∃*𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑))
64, 5bd0r 15899 1 BOUNDED ∃*𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2486  ∃!wreu 2487  ∃*wrmo 2488  BOUNDED wbd 15886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15887  ax-bdim 15888  ax-bdan 15889  ax-bdal 15892  ax-bdex 15893  ax-bdeq 15894
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2199  df-clel 2202  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator