Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo GIF version

Theorem bdrmo 14991
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED 𝜑
Assertion
Ref Expression
bdrmo BOUNDED ∃*𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED 𝜑
21ax-bdex 14954 . . 3 BOUNDED𝑥𝑦 𝜑
31bdreu 14990 . . 3 BOUNDED ∃!𝑥𝑦 𝜑
42, 3ax-bdim 14949 . 2 BOUNDED (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑)
5 rmo5 2705 . 2 (∃*𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑))
64, 5bd0r 14960 1 BOUNDED ∃*𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2468  ∃!wreu 2469  ∃*wrmo 2470  BOUNDED wbd 14947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170  ax-bd0 14948  ax-bdim 14949  ax-bdan 14950  ax-bdal 14953  ax-bdex 14954  ax-bdeq 14955
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-cleq 2181  df-clel 2184  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator