Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo GIF version

Theorem bdrmo 15348
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED 𝜑
Assertion
Ref Expression
bdrmo BOUNDED ∃*𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED 𝜑
21ax-bdex 15311 . . 3 BOUNDED𝑥𝑦 𝜑
31bdreu 15347 . . 3 BOUNDED ∃!𝑥𝑦 𝜑
42, 3ax-bdim 15306 . 2 BOUNDED (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑)
5 rmo5 2714 . 2 (∃*𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 → ∃!𝑥𝑦 𝜑))
64, 5bd0r 15317 1 BOUNDED ∃*𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2473  ∃!wreu 2474  ∃*wrmo 2475  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15305  ax-bdim 15306  ax-bdan 15307  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186  df-clel 2189  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator