Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 GIF version

Theorem bj-axun2 15855
Description: axun2 4482 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 15761 . . . 4 BOUNDED 𝑧𝑤
21ax-bdex 15759 . . 3 BOUNDED𝑤𝑥 𝑧𝑤
3 df-rex 2490 . . . 4 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑤𝑥𝑧𝑤))
4 exancom 1631 . . . 4 (∃𝑤(𝑤𝑥𝑧𝑤) ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
53, 4bitri 184 . . 3 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
62, 5bd0 15764 . 2 BOUNDED𝑤(𝑧𝑤𝑤𝑥)
7 ax-un 4480 . 2 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
86, 7bdbm1.3ii 15831 1 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371  wex 1515  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-14 2179  ax-un 4480  ax-bd0 15753  ax-bdex 15759  ax-bdel 15761  ax-bdsep 15824
This theorem depends on definitions:  df-bi 117  df-rex 2490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator