Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 GIF version

Theorem bj-axun2 13797
Description: axun2 4413 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 13703 . . . 4 BOUNDED 𝑧𝑤
21ax-bdex 13701 . . 3 BOUNDED𝑤𝑥 𝑧𝑤
3 df-rex 2450 . . . 4 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑤𝑥𝑧𝑤))
4 exancom 1596 . . . 4 (∃𝑤(𝑤𝑥𝑧𝑤) ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
53, 4bitri 183 . . 3 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
62, 5bd0 13706 . 2 BOUNDED𝑤(𝑧𝑤𝑤𝑥)
7 ax-un 4411 . 2 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
86, 7bdbm1.3ii 13773 1 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341  wex 1480  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-14 2139  ax-un 4411  ax-bd0 13695  ax-bdex 13701  ax-bdel 13703  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator