Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 GIF version

Theorem bj-axun2 16278
Description: axun2 4526 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 16184 . . . 4 BOUNDED 𝑧𝑤
21ax-bdex 16182 . . 3 BOUNDED𝑤𝑥 𝑧𝑤
3 df-rex 2514 . . . 4 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑤𝑥𝑧𝑤))
4 exancom 1654 . . . 4 (∃𝑤(𝑤𝑥𝑧𝑤) ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
53, 4bitri 184 . . 3 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
62, 5bd0 16187 . 2 BOUNDED𝑤(𝑧𝑤𝑤𝑥)
7 ax-un 4524 . 2 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
86, 7bdbm1.3ii 16254 1 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  wex 1538  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-14 2203  ax-un 4524  ax-bd0 16176  ax-bdex 16182  ax-bdel 16184  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-rex 2514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator