Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 GIF version

Theorem bj-axun2 13532
Description: axun2 4396 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 13438 . . . 4 BOUNDED 𝑧𝑤
21ax-bdex 13436 . . 3 BOUNDED𝑤𝑥 𝑧𝑤
3 df-rex 2441 . . . 4 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑤𝑥𝑧𝑤))
4 exancom 1588 . . . 4 (∃𝑤(𝑤𝑥𝑧𝑤) ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
53, 4bitri 183 . . 3 (∃𝑤𝑥 𝑧𝑤 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
62, 5bd0 13441 . 2 BOUNDED𝑤(𝑧𝑤𝑤𝑥)
7 ax-un 4394 . 2 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
86, 7bdbm1.3ii 13508 1 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1333  wex 1472  wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-14 2131  ax-un 4394  ax-bd0 13430  ax-bdex 13436  ax-bdel 13438  ax-bdsep 13501
This theorem depends on definitions:  df-bi 116  df-rex 2441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator