| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axun2 | GIF version | ||
| Description: axun2 4470 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axun2 | ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdel 15467 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝑤 | |
| 2 | 1 | ax-bdex 15465 | . . 3 ⊢ BOUNDED ∃𝑤 ∈ 𝑥 𝑧 ∈ 𝑤 |
| 3 | df-rex 2481 | . . . 4 ⊢ (∃𝑤 ∈ 𝑥 𝑧 ∈ 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑤)) | |
| 4 | exancom 1622 | . . . 4 ⊢ (∃𝑤(𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑤) ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | |
| 5 | 3, 4 | bitri 184 | . . 3 ⊢ (∃𝑤 ∈ 𝑥 𝑧 ∈ 𝑤 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| 6 | 2, 5 | bd0 15470 | . 2 ⊢ BOUNDED ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
| 7 | ax-un 4468 | . 2 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 8 | 6, 7 | bdbm1.3ii 15537 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-14 2170 ax-un 4468 ax-bd0 15459 ax-bdex 15465 ax-bdel 15467 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-rex 2481 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |