Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcuni GIF version

Theorem bdcuni 15522
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
Assertion
Ref Expression
bdcuni BOUNDED 𝑥

Proof of Theorem bdcuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15467 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdex 15465 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
32bdcab 15495 . . 3 BOUNDED {𝑦 ∣ ∃𝑧𝑥 𝑦𝑧}
4 df-rex 2481 . . . . 5 (∃𝑧𝑥 𝑦𝑧 ↔ ∃𝑧(𝑧𝑥𝑦𝑧))
5 exancom 1622 . . . . 5 (∃𝑧(𝑧𝑥𝑦𝑧) ↔ ∃𝑧(𝑦𝑧𝑧𝑥))
64, 5bitri 184 . . . 4 (∃𝑧𝑥 𝑦𝑧 ↔ ∃𝑧(𝑦𝑧𝑧𝑥))
76abbii 2312 . . 3 {𝑦 ∣ ∃𝑧𝑥 𝑦𝑧} = {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
83, 7bdceqi 15489 . 2 BOUNDED {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
9 df-uni 3840 . 2 𝑥 = {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
108, 9bdceqir 15490 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1506  {cab 2182  wrex 2476   cuni 3839  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdex 15465  ax-bdel 15467  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rex 2481  df-uni 3840  df-bdc 15487
This theorem is referenced by:  bj-uniex2  15562
  Copyright terms: Public domain W3C validator