![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcuni | GIF version |
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
Ref | Expression |
---|---|
bdcuni | ⊢ BOUNDED ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 15258 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdex 15256 | . . . 4 ⊢ BOUNDED ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | 2 | bdcab 15286 | . . 3 ⊢ BOUNDED {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} |
4 | df-rex 2478 | . . . . 5 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧)) | |
5 | exancom 1619 | . . . . 5 ⊢ (∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) |
7 | 6 | abbii 2309 | . . 3 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
8 | 3, 7 | bdceqi 15280 | . 2 ⊢ BOUNDED {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
9 | df-uni 3836 | . 2 ⊢ ∪ 𝑥 = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} | |
10 | 8, 9 | bdceqir 15281 | 1 ⊢ BOUNDED ∪ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1503 {cab 2179 ∃wrex 2473 ∪ cuni 3835 BOUNDED wbdc 15277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15250 ax-bdex 15256 ax-bdel 15258 ax-bdsb 15259 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-rex 2478 df-uni 3836 df-bdc 15278 |
This theorem is referenced by: bj-uniex2 15353 |
Copyright terms: Public domain | W3C validator |