| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcuni | GIF version | ||
| Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcuni | ⊢ BOUNDED ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdel 16142 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
| 2 | 1 | ax-bdex 16140 | . . . 4 ⊢ BOUNDED ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
| 3 | 2 | bdcab 16170 | . . 3 ⊢ BOUNDED {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} |
| 4 | df-rex 2514 | . . . . 5 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧)) | |
| 5 | exancom 1654 | . . . . 5 ⊢ (∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
| 6 | 4, 5 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) |
| 7 | 6 | abbii 2345 | . . 3 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
| 8 | 3, 7 | bdceqi 16164 | . 2 ⊢ BOUNDED {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
| 9 | df-uni 3888 | . 2 ⊢ ∪ 𝑥 = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} | |
| 10 | 8, 9 | bdceqir 16165 | 1 ⊢ BOUNDED ∪ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 {cab 2215 ∃wrex 2509 ∪ cuni 3887 BOUNDED wbdc 16161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16134 ax-bdex 16140 ax-bdel 16142 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rex 2514 df-uni 3888 df-bdc 16162 |
| This theorem is referenced by: bj-uniex2 16237 |
| Copyright terms: Public domain | W3C validator |