![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcuni | GIF version |
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
Ref | Expression |
---|---|
bdcuni | ⊢ BOUNDED ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 14658 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdex 14656 | . . . 4 ⊢ BOUNDED ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | 2 | bdcab 14686 | . . 3 ⊢ BOUNDED {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} |
4 | df-rex 2461 | . . . . 5 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧)) | |
5 | exancom 1608 | . . . . 5 ⊢ (∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) |
7 | 6 | abbii 2293 | . . 3 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
8 | 3, 7 | bdceqi 14680 | . 2 ⊢ BOUNDED {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
9 | df-uni 3812 | . 2 ⊢ ∪ 𝑥 = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} | |
10 | 8, 9 | bdceqir 14681 | 1 ⊢ BOUNDED ∪ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1492 {cab 2163 ∃wrex 2456 ∪ cuni 3811 BOUNDED wbdc 14677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-bd0 14650 ax-bdex 14656 ax-bdel 14658 ax-bdsb 14659 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-rex 2461 df-uni 3812 df-bdc 14678 |
This theorem is referenced by: bj-uniex2 14753 |
Copyright terms: Public domain | W3C validator |