Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcuni GIF version

Theorem bdcuni 15950
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
Assertion
Ref Expression
bdcuni BOUNDED 𝑥

Proof of Theorem bdcuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15895 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdex 15893 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
32bdcab 15923 . . 3 BOUNDED {𝑦 ∣ ∃𝑧𝑥 𝑦𝑧}
4 df-rex 2491 . . . . 5 (∃𝑧𝑥 𝑦𝑧 ↔ ∃𝑧(𝑧𝑥𝑦𝑧))
5 exancom 1632 . . . . 5 (∃𝑧(𝑧𝑥𝑦𝑧) ↔ ∃𝑧(𝑦𝑧𝑧𝑥))
64, 5bitri 184 . . . 4 (∃𝑧𝑥 𝑦𝑧 ↔ ∃𝑧(𝑦𝑧𝑧𝑥))
76abbii 2322 . . 3 {𝑦 ∣ ∃𝑧𝑥 𝑦𝑧} = {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
83, 7bdceqi 15917 . 2 BOUNDED {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
9 df-uni 3857 . 2 𝑥 = {𝑦 ∣ ∃𝑧(𝑦𝑧𝑧𝑥)}
108, 9bdceqir 15918 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1516  {cab 2192  wrex 2486   cuni 3856  BOUNDED wbdc 15914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15887  ax-bdex 15893  ax-bdel 15895  ax-bdsb 15896
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-rex 2491  df-uni 3857  df-bdc 15915
This theorem is referenced by:  bj-uniex2  15990
  Copyright terms: Public domain W3C validator