| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciun | GIF version | ||
| Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdciun.1 | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdciun | ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 15576 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
| 3 | 2 | ax-bdex 15549 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
| 4 | 3 | bdcab 15579 | . 2 ⊢ BOUNDED {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
| 5 | df-iun 3919 | . 2 ⊢ ∪ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
| 6 | 4, 5 | bdceqir 15574 | 1 ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 ∃wrex 2476 ∪ ciun 3917 BOUNDED wbdc 15570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15543 ax-bdex 15549 ax-bdsb 15552 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-iun 3919 df-bdc 15571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |