| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciun | GIF version | ||
| Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdciun.1 | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdciun | ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 16167 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
| 3 | 2 | ax-bdex 16140 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
| 4 | 3 | bdcab 16170 | . 2 ⊢ BOUNDED {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
| 5 | df-iun 3966 | . 2 ⊢ ∪ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
| 6 | 4, 5 | bdceqir 16165 | 1 ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {cab 2215 ∃wrex 2509 ∪ ciun 3964 BOUNDED wbdc 16161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-bd0 16134 ax-bdex 16140 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-iun 3966 df-bdc 16162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |