![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciun | GIF version |
Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdciun.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdciun | ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 15283 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
3 | 2 | ax-bdex 15256 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
4 | 3 | bdcab 15286 | . 2 ⊢ BOUNDED {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
5 | df-iun 3914 | . 2 ⊢ ∪ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
6 | 4, 5 | bdceqir 15281 | 1 ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 {cab 2179 ∃wrex 2473 ∪ ciun 3912 BOUNDED wbdc 15277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-bd0 15250 ax-bdex 15256 ax-bdsb 15259 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-iun 3914 df-bdc 15278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |