| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciun | GIF version | ||
| Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| bdciun.1 | ⊢ BOUNDED 𝐴 | 
| Ref | Expression | 
|---|---|
| bdciun | ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 15492 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 | 
| 3 | 2 | ax-bdex 15465 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 | 
| 4 | 3 | bdcab 15495 | . 2 ⊢ BOUNDED {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | 
| 5 | df-iun 3918 | . 2 ⊢ ∪ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
| 6 | 4, 5 | bdceqir 15490 | 1 ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 {cab 2182 ∃wrex 2476 ∪ ciun 3916 BOUNDED wbdc 15486 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15459 ax-bdex 15465 ax-bdsb 15468 | 
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-iun 3918 df-bdc 15487 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |