Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciun | GIF version |
Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdciun.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdciun | ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 13738 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
3 | 2 | ax-bdex 13711 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
4 | 3 | bdcab 13741 | . 2 ⊢ BOUNDED {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
5 | df-iun 3868 | . 2 ⊢ ∪ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
6 | 4, 5 | bdceqir 13736 | 1 ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 {cab 2151 ∃wrex 2445 ∪ ciun 3866 BOUNDED wbdc 13732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-bd0 13705 ax-bdex 13711 ax-bdsb 13714 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-iun 3868 df-bdc 13733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |