Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciun GIF version

Theorem bdciun 13770
Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1 BOUNDED 𝐴
Assertion
Ref Expression
bdciun BOUNDED 𝑥𝑦 𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bdciun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5 BOUNDED 𝐴
21bdeli 13738 . . . 4 BOUNDED 𝑧𝐴
32ax-bdex 13711 . . 3 BOUNDED𝑥𝑦 𝑧𝐴
43bdcab 13741 . 2 BOUNDED {𝑧 ∣ ∃𝑥𝑦 𝑧𝐴}
5 df-iun 3868 . 2 𝑥𝑦 𝐴 = {𝑧 ∣ ∃𝑥𝑦 𝑧𝐴}
64, 5bdceqir 13736 1 BOUNDED 𝑥𝑦 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2136  {cab 2151  wrex 2445   ciun 3866  BOUNDED wbdc 13732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13705  ax-bdex 13711  ax-bdsb 13714
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-iun 3868  df-bdc 13733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator