ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-bndl GIF version

Axiom ax-bndl 1451
Description: Axiom of bundling. The general idea of this axiom is that two variables are either distinct or non-distinct. That idea could be expressed as 𝑧𝑧 = 𝑥 ∨ ¬ ∀𝑧𝑧 = 𝑥. However, we instead choose an axiom which has many of the same consequences, but which is different with respect to a universe which contains only one object. 𝑧𝑧 = 𝑥 holds if 𝑧 and 𝑥 are the same variable, likewise for 𝑧 and 𝑦, and 𝑥𝑧(𝑥 = 𝑦 → ∀𝑧𝑥 = 𝑦) holds if 𝑧 is distinct from the others (and the universe has at least two objects).

As with other statements of the form "x is decidable (either true or false)", this does not entail the full Law of the Excluded Middle (which is the proposition that all statements are decidable), but instead merely the assertion that particular kinds of statements are decidable (or in this case, an assertion similar to decidability).

This axiom implies ax-i12 1450 as can be seen at axi12 1459. Whether ax-bndl 1451 can be proved from the remaining axioms including ax-i12 1450 is not known.

The reason we call this "bundling" is that a statement without a distinct variable constraint "bundles" together two statements, one in which the two variables are the same and one in which they are different. (Contributed by Mario Carneiro and Jim Kingdon, 14-Mar-2018.)

Assertion
Ref Expression
ax-bndl (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Detailed syntax breakdown of Axiom ax-bndl
StepHypRef Expression
1 vz . . . 4 setvar 𝑧
2 vx . . . 4 setvar 𝑥
31, 2weq 1444 . . 3 wff 𝑧 = 𝑥
43, 1wal 1294 . 2 wff 𝑧 𝑧 = 𝑥
5 vy . . . . 5 setvar 𝑦
61, 5weq 1444 . . . 4 wff 𝑧 = 𝑦
76, 1wal 1294 . . 3 wff 𝑧 𝑧 = 𝑦
82, 5weq 1444 . . . . . 6 wff 𝑥 = 𝑦
98, 1wal 1294 . . . . . 6 wff 𝑧 𝑥 = 𝑦
108, 9wi 4 . . . . 5 wff (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
1110, 1wal 1294 . . . 4 wff 𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
1211, 2wal 1294 . . 3 wff 𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
137, 12wo 667 . 2 wff (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
144, 13wo 667 1 wff (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
Colors of variables: wff set class
This axiom is referenced by:  axi12  1459  nfsbxy  1873  nfsbxyt  1874  sbcomxyyz  1901  dvelimor  1949  oprabidlem  5718
  Copyright terms: Public domain W3C validator