Proof of Theorem dvelimor
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-bndl 1523 | 
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) | 
| 2 |   | orcom 729 | 
. . . . . . 7
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)) | 
| 3 | 2 | orbi2i 763 | 
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))) | 
| 4 | 1, 3 | mpbi 145 | 
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)) | 
| 5 |   | orass 768 | 
. . . . 5
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))) | 
| 6 | 4, 5 | mpbir 146 | 
. . . 4
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) | 
| 7 |   | nfae 1733 | 
. . . . . . 7
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | 
| 8 |   | a16nf 1880 | 
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 9 | 7, 8 | alrimi 1536 | 
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 10 |   | df-nf 1475 | 
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | 
| 11 |   | id 19 | 
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | 
| 12 |   | dvelimor.1 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 | 
| 13 | 12 | a1i 9 | 
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥𝜑) | 
| 14 | 11, 13 | nfimd 1599 | 
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 15 | 10, 14 | sylbir 135 | 
. . . . . . 7
⊢
(∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 16 | 15 | alimi 1469 | 
. . . . . 6
⊢
(∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 17 | 9, 16 | jaoi 717 | 
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 18 | 17 | orim1i 761 | 
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦)) | 
| 19 | 6, 18 | ax-mp 5 | 
. . 3
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦) | 
| 20 |   | orcom 729 | 
. . 3
⊢
((∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑))) | 
| 21 | 19, 20 | mpbi 145 | 
. 2
⊢
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) | 
| 22 |   | nfalt 1592 | 
. . . 4
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)) | 
| 23 |   | ax-17 1540 | 
. . . . . 6
⊢ (𝜓 → ∀𝑧𝜓) | 
| 24 |   | dvelimor.2 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 25 | 23, 24 | equsalh 1740 | 
. . . . 5
⊢
(∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) | 
| 26 | 25 | nfbii 1487 | 
. . . 4
⊢
(Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ Ⅎ𝑥𝜓) | 
| 27 | 22, 26 | sylib 122 | 
. . 3
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) → Ⅎ𝑥𝜓) | 
| 28 | 27 | orim2i 762 | 
. 2
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)) | 
| 29 | 21, 28 | ax-mp 5 | 
1
⊢
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓) |