Proof of Theorem dvelimor
Step | Hyp | Ref
| Expression |
1 | | ax-bndl 1489 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
2 | | orcom 718 |
. . . . . . 7
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)) |
3 | 2 | orbi2i 752 |
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))) |
4 | 1, 3 | mpbi 144 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)) |
5 | | orass 757 |
. . . . 5
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))) |
6 | 4, 5 | mpbir 145 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) |
7 | | nfae 1699 |
. . . . . . 7
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑧 |
8 | | a16nf 1846 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
9 | 7, 8 | alrimi 1502 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
10 | | df-nf 1441 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
11 | | id 19 |
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
12 | | dvelimor.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
13 | 12 | a1i 9 |
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥𝜑) |
14 | 11, 13 | nfimd 1565 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
15 | 10, 14 | sylbir 134 |
. . . . . . 7
⊢
(∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
16 | 15 | alimi 1435 |
. . . . . 6
⊢
(∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
17 | 9, 16 | jaoi 706 |
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
18 | 17 | orim1i 750 |
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑧∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦)) |
19 | 6, 18 | ax-mp 5 |
. . 3
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦) |
20 | | orcom 718 |
. . 3
⊢
((∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑))) |
21 | 19, 20 | mpbi 144 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
22 | | nfalt 1558 |
. . . 4
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)) |
23 | | ax-17 1506 |
. . . . . 6
⊢ (𝜓 → ∀𝑧𝜓) |
24 | | dvelimor.2 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
25 | 23, 24 | equsalh 1706 |
. . . . 5
⊢
(∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
26 | 25 | nfbii 1453 |
. . . 4
⊢
(Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ Ⅎ𝑥𝜓) |
27 | 22, 26 | sylib 121 |
. . 3
⊢
(∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑) → Ⅎ𝑥𝜓) |
28 | 27 | orim2i 751 |
. 2
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)) |
29 | 21, 28 | ax-mp 5 |
1
⊢
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓) |