| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabidlem | GIF version | ||
| Description: Slight elaboration of exdistrfor 1846. A lemma for oprabid 6032. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| oprabidlem | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bndl 1555 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 2 | ax-10 1551 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
| 3 | dtru 4651 | . . . . . 6 ⊢ ¬ ∀𝑦 𝑦 = 𝑧 | |
| 4 | pm2.53 727 | . . . . . 6 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 5 | 3, 4 | mpi 15 | . . . . 5 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 6 | df-nf 1507 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
| 7 | 6 | albii 1516 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 8 | 5, 7 | sylibr 134 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 9 | 2, 8 | orim12i 764 | . . 3 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧)) |
| 10 | 1, 9 | ax-mp 5 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 11 | 10 | exdistrfor 1846 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∀wal 1393 Ⅎwnf 1506 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: oprabid 6032 |
| Copyright terms: Public domain | W3C validator |