| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabidlem | GIF version | ||
| Description: Slight elaboration of exdistrfor 1824. A lemma for oprabid 5989. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| oprabidlem | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bndl 1533 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 2 | ax-10 1529 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
| 3 | dtru 4616 | . . . . . 6 ⊢ ¬ ∀𝑦 𝑦 = 𝑧 | |
| 4 | pm2.53 724 | . . . . . 6 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 5 | 3, 4 | mpi 15 | . . . . 5 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 6 | df-nf 1485 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
| 7 | 6 | albii 1494 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 8 | 5, 7 | sylibr 134 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 9 | 2, 8 | orim12i 761 | . . 3 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧)) |
| 10 | 1, 9 | ax-mp 5 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 11 | 10 | exdistrfor 1824 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: oprabid 5989 |
| Copyright terms: Public domain | W3C validator |