![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprabidlem | GIF version |
Description: Slight elaboration of exdistrfor 1811. A lemma for oprabid 5928. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
oprabidlem | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bndl 1520 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
2 | ax-10 1516 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
3 | dtru 4577 | . . . . . 6 ⊢ ¬ ∀𝑦 𝑦 = 𝑧 | |
4 | pm2.53 723 | . . . . . 6 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
5 | 3, 4 | mpi 15 | . . . . 5 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
6 | df-nf 1472 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
7 | 6 | albii 1481 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
8 | 5, 7 | sylibr 134 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
9 | 2, 8 | orim12i 760 | . . 3 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧)) |
10 | 1, 9 | ax-mp 5 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
11 | 10 | exdistrfor 1811 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1362 Ⅎwnf 1471 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 |
This theorem is referenced by: oprabid 5928 |
Copyright terms: Public domain | W3C validator |