ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabidlem GIF version

Theorem oprabidlem 5873
Description: Slight elaboration of exdistrfor 1788. A lemma for oprabid 5874. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
oprabidlem (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabidlem
StepHypRef Expression
1 ax-bndl 1497 . . 3 (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
2 ax-10 1493 . . . 4 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
3 dtru 4537 . . . . . 6 ¬ ∀𝑦 𝑦 = 𝑧
4 pm2.53 712 . . . . . 6 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
53, 4mpi 15 . . . . 5 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
6 df-nf 1449 . . . . . 6 (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
76albii 1458 . . . . 5 (∀𝑥𝑦 𝑥 = 𝑧 ↔ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
85, 7sylibr 133 . . . 4 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦 𝑥 = 𝑧)
92, 8orim12i 749 . . 3 ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧))
101, 9ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧)
1110exdistrfor 1788 1 (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  wal 1341  wnf 1448  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by:  oprabid  5874
  Copyright terms: Public domain W3C validator