ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabidlem GIF version

Theorem oprabidlem 5988
Description: Slight elaboration of exdistrfor 1824. A lemma for oprabid 5989. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
oprabidlem (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabidlem
StepHypRef Expression
1 ax-bndl 1533 . . 3 (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
2 ax-10 1529 . . . 4 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
3 dtru 4616 . . . . . 6 ¬ ∀𝑦 𝑦 = 𝑧
4 pm2.53 724 . . . . . 6 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
53, 4mpi 15 . . . . 5 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
6 df-nf 1485 . . . . . 6 (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
76albii 1494 . . . . 5 (∀𝑥𝑦 𝑥 = 𝑧 ↔ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
85, 7sylibr 134 . . . 4 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦 𝑥 = 𝑧)
92, 8orim12i 761 . . 3 ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧))
101, 9ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧)
1110exdistrfor 1824 1 (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  wal 1371  wnf 1484  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644
This theorem is referenced by:  oprabid  5989
  Copyright terms: Public domain W3C validator