ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabidlem GIF version

Theorem oprabidlem 5974
Description: Slight elaboration of exdistrfor 1822. A lemma for oprabid 5975. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
oprabidlem (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabidlem
StepHypRef Expression
1 ax-bndl 1531 . . 3 (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
2 ax-10 1527 . . . 4 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
3 dtru 4607 . . . . . 6 ¬ ∀𝑦 𝑦 = 𝑧
4 pm2.53 723 . . . . . 6 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
53, 4mpi 15 . . . . 5 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
6 df-nf 1483 . . . . . 6 (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
76albii 1492 . . . . 5 (∀𝑥𝑦 𝑥 = 𝑧 ↔ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
85, 7sylibr 134 . . . 4 ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥𝑦 𝑥 = 𝑧)
92, 8orim12i 760 . . 3 ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧))
101, 9ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦 𝑥 = 𝑧)
1110exdistrfor 1822 1 (∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wal 1370  wnf 1482  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638
This theorem is referenced by:  oprabid  5975
  Copyright terms: Public domain W3C validator