Proof of Theorem sbcomxyyz
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-bndl 1523 | 
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | 
| 2 |   | ax-ial 1548 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧∀𝑧 𝑧 = 𝑥) | 
| 3 |   | drsb1 1813 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 4 | 2, 3 | sbbidh 1859 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 5 |   | drsb1 1813 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 6 | 4, 5 | bitr3d 190 | 
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 7 |   | sbequ12 1785 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 8 | 7 | sps 1551 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 9 |   | hbae 1732 | 
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑥∀𝑧 𝑧 = 𝑦) | 
| 10 |   | sbequ12 1785 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑)) | 
| 11 | 10 | sps 1551 | 
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑)) | 
| 12 | 9, 11 | sbbidh 1859 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 13 | 8, 12 | bitr3d 190 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 14 |   | df-nf 1475 | 
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | 
| 15 | 14 | albii 1484 | 
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | 
| 16 |   | ax-ial 1548 | 
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ∀𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦) | 
| 17 |   | nfs1v 1958 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 | 
| 18 | 17 | nfsb 1965 | 
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑 | 
| 19 | 18 | a1i 9 | 
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑) | 
| 20 | 19 | nfrd 1534 | 
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 21 |   | nfr 1532 | 
. . . . . . . . 9
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | 
| 22 |   | nfnf1 1558 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧Ⅎ𝑧 𝑥 = 𝑦 | 
| 23 |   | nfa1 1555 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧∀𝑧 𝑥 = 𝑦 | 
| 24 | 22, 23 | nfan 1579 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) | 
| 25 | 24 | nfri 1533 | 
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ∀𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦)) | 
| 26 |   | nfs1v 1958 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑 | 
| 27 | 26 | a1i 9 | 
. . . . . . . . . . . 12
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑) | 
| 28 | 27 | nfrd 1534 | 
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 29 |   | sbequ12 1785 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 30 | 29, 7 | sylan9bb 462 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 31 | 30 | ex 115 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 32 | 31 | sps 1551 | 
. . . . . . . . . . . 12
⊢
(∀𝑧 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 33 | 32 | adantl 277 | 
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 34 | 25, 28, 33 | sbiedh 1801 | 
. . . . . . . . . 10
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 35 | 34 | ex 115 | 
. . . . . . . . 9
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 36 | 21, 35 | syld 45 | 
. . . . . . . 8
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 37 | 36 | sps 1551 | 
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) | 
| 38 | 16, 20, 37 | sbiedh 1801 | 
. . . . . 6
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) | 
| 39 | 38 | bicomd 141 | 
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 40 | 15, 39 | sylbir 135 | 
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 41 | 13, 40 | jaoi 717 | 
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 42 | 6, 41 | jaoi 717 | 
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) | 
| 43 | 1, 42 | ax-mp 5 | 
1
⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) |