Proof of Theorem sbcomxyyz
Step | Hyp | Ref
| Expression |
1 | | ax-bndl 1497 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
2 | | ax-ial 1522 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧∀𝑧 𝑧 = 𝑥) |
3 | | drsb1 1787 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
4 | 2, 3 | sbbidh 1833 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
5 | | drsb1 1787 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
6 | 4, 5 | bitr3d 189 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
7 | | sbequ12 1759 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
8 | 7 | sps 1525 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
9 | | hbae 1706 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑥∀𝑧 𝑧 = 𝑦) |
10 | | sbequ12 1759 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
11 | 10 | sps 1525 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
12 | 9, 11 | sbbidh 1833 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
13 | 8, 12 | bitr3d 189 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
14 | | df-nf 1449 |
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
15 | 14 | albii 1458 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
16 | | ax-ial 1522 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ∀𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦) |
17 | | nfs1v 1927 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
18 | 17 | nfsb 1934 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑 |
19 | 18 | a1i 9 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑) |
20 | 19 | nfrd 1508 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
21 | | nfr 1506 |
. . . . . . . . 9
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
22 | | nfnf1 1532 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧Ⅎ𝑧 𝑥 = 𝑦 |
23 | | nfa1 1529 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧∀𝑧 𝑥 = 𝑦 |
24 | 22, 23 | nfan 1553 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) |
25 | 24 | nfri 1507 |
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ∀𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦)) |
26 | | nfs1v 1927 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑 |
27 | 26 | a1i 9 |
. . . . . . . . . . . 12
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑) |
28 | 27 | nfrd 1508 |
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
29 | | sbequ12 1759 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
30 | 29, 7 | sylan9bb 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
31 | 30 | ex 114 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
32 | 31 | sps 1525 |
. . . . . . . . . . . 12
⊢
(∀𝑧 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
33 | 32 | adantl 275 |
. . . . . . . . . . 11
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
34 | 25, 28, 33 | sbiedh 1775 |
. . . . . . . . . 10
⊢
((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
35 | 34 | ex 114 |
. . . . . . . . 9
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
36 | 21, 35 | syld 45 |
. . . . . . . 8
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
37 | 36 | sps 1525 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))) |
38 | 16, 20, 37 | sbiedh 1775 |
. . . . . 6
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)) |
39 | 38 | bicomd 140 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
40 | 15, 39 | sylbir 134 |
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
41 | 13, 40 | jaoi 706 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
42 | 6, 41 | jaoi 706 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)) |
43 | 1, 42 | ax-mp 5 |
1
⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) |