ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxyt GIF version

Theorem nfsbxyt 1923
Description: Closed form of nfsbxy 1922. (Contributed by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsbxyt (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbxyt
StepHypRef Expression
1 ax-bndl 1489 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 nfs1v 1919 . . . . 5 𝑧[𝑦 / 𝑧]𝜑
3 drsb1 1779 . . . . . 6 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43drnf2 1714 . . . . 5 (∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑))
52, 4mpbii 147 . . . 4 (∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
65a1d 22 . . 3 (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
7 a16nf 1846 . . . . 5 (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
87a1d 22 . . . 4 (∀𝑧 𝑧 = 𝑦 → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
9 df-nf 1441 . . . . . 6 (Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
109albii 1450 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 ↔ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
11 sb5 1867 . . . . . . 7 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
12 nfa1 1521 . . . . . . . . 9 𝑥𝑥𝑧 𝑥 = 𝑦
13 nfa1 1521 . . . . . . . . 9 𝑥𝑥𝑧𝜑
1412, 13nfan 1545 . . . . . . . 8 𝑥(∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑)
15 sp 1491 . . . . . . . . . 10 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦)
1615adantr 274 . . . . . . . . 9 ((∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑) → Ⅎ𝑧 𝑥 = 𝑦)
17 sp 1491 . . . . . . . . . 10 (∀𝑥𝑧𝜑 → Ⅎ𝑧𝜑)
1817adantl 275 . . . . . . . . 9 ((∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑) → Ⅎ𝑧𝜑)
1916, 18nfand 1548 . . . . . . . 8 ((∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑) → Ⅎ𝑧(𝑥 = 𝑦𝜑))
2014, 19nfexd 1741 . . . . . . 7 ((∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑) → Ⅎ𝑧𝑥(𝑥 = 𝑦𝜑))
2111, 20nfxfrd 1455 . . . . . 6 ((∀𝑥𝑧 𝑥 = 𝑦 ∧ ∀𝑥𝑧𝜑) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
2221ex 114 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
2310, 22sylbir 134 . . . 4 (∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
248, 23jaoi 706 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
256, 24jaoi 706 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
261, 25ax-mp 5 1 (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1333  wnf 1440  wex 1472  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743
This theorem is referenced by:  nfsbt  1956
  Copyright terms: Public domain W3C validator