Proof of Theorem nfsbxyt
Step | Hyp | Ref
| Expression |
1 | | ax-bndl 1489 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
2 | | nfs1v 1919 |
. . . . 5
⊢
Ⅎ𝑧[𝑦 / 𝑧]𝜑 |
3 | | drsb1 1779 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
4 | 3 | drnf2 1714 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
5 | 2, 4 | mpbii 147 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
6 | 5 | a1d 22 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
7 | | a16nf 1846 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
8 | 7 | a1d 22 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
9 | | df-nf 1441 |
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
10 | 9 | albii 1450 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
11 | | sb5 1867 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
12 | | nfa1 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦 |
13 | | nfa1 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧𝜑 |
14 | 12, 13 | nfan 1545 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) |
15 | | sp 1491 |
. . . . . . . . . 10
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦) |
16 | 15 | adantr 274 |
. . . . . . . . 9
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧 𝑥 = 𝑦) |
17 | | sp 1491 |
. . . . . . . . . 10
⊢
(∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧𝜑) |
18 | 17 | adantl 275 |
. . . . . . . . 9
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧𝜑) |
19 | 16, 18 | nfand 1548 |
. . . . . . . 8
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
20 | 14, 19 | nfexd 1741 |
. . . . . . 7
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
21 | 11, 20 | nfxfrd 1455 |
. . . . . 6
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
22 | 21 | ex 114 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
23 | 10, 22 | sylbir 134 |
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
24 | 8, 23 | jaoi 706 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
25 | 6, 24 | jaoi 706 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
26 | 1, 25 | ax-mp 5 |
1
⊢
(∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |