Proof of Theorem nfsbxyt
| Step | Hyp | Ref
| Expression |
| 1 | | ax-bndl 1523 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 2 | | nfs1v 1958 |
. . . . 5
⊢
Ⅎ𝑧[𝑦 / 𝑧]𝜑 |
| 3 | | drsb1 1813 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 4 | 3 | drnf2 1748 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 5 | 2, 4 | mpbii 148 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 6 | 5 | a1d 22 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 7 | | a16nf 1880 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 8 | 7 | a1d 22 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 9 | | df-nf 1475 |
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 10 | 9 | albii 1484 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 11 | | sb5 1902 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 12 | | nfa1 1555 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦 |
| 13 | | nfa1 1555 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧𝜑 |
| 14 | 12, 13 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) |
| 15 | | sp 1525 |
. . . . . . . . . 10
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦) |
| 16 | 15 | adantr 276 |
. . . . . . . . 9
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧 𝑥 = 𝑦) |
| 17 | | sp 1525 |
. . . . . . . . . 10
⊢
(∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧𝜑) |
| 18 | 17 | adantl 277 |
. . . . . . . . 9
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧𝜑) |
| 19 | 16, 18 | nfand 1582 |
. . . . . . . 8
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
| 20 | 14, 19 | nfexd 1775 |
. . . . . . 7
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 21 | 11, 20 | nfxfrd 1489 |
. . . . . 6
⊢
((∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑧𝜑) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 22 | 21 | ex 115 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 23 | 10, 22 | sylbir 135 |
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 24 | 8, 23 | jaoi 717 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 25 | 6, 24 | jaoi 717 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 26 | 1, 25 | ax-mp 5 |
1
⊢
(∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |