ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxy GIF version

Theorem nfsbxy 1930
Description: Similar to hbsb 1937 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsbxy.1 𝑧𝜑
Assertion
Ref Expression
nfsbxy 𝑧[𝑦 / 𝑥]𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbxy
StepHypRef Expression
1 ax-bndl 1497 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 nfs1v 1927 . . . 4 𝑧[𝑦 / 𝑧]𝜑
3 drsb1 1787 . . . . 5 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43drnf2 1722 . . . 4 (∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑))
52, 4mpbii 147 . . 3 (∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
6 a16nf 1854 . . . 4 (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
7 df-nf 1449 . . . . . 6 (Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
87albii 1458 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 ↔ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
9 sb5 1875 . . . . . 6 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
10 nfa1 1529 . . . . . . 7 𝑥𝑥𝑧 𝑥 = 𝑦
11 sp 1499 . . . . . . . 8 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦)
12 nfsbxy.1 . . . . . . . . 9 𝑧𝜑
1312a1i 9 . . . . . . . 8 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
1411, 13nfand 1556 . . . . . . 7 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧(𝑥 = 𝑦𝜑))
1510, 14nfexd 1749 . . . . . 6 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝑥(𝑥 = 𝑦𝜑))
169, 15nfxfrd 1463 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
178, 16sylbir 134 . . . 4 (∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
186, 17jaoi 706 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
195, 18jaoi 706 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
201, 19ax-mp 5 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1341  wnf 1448  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  nfsb  1934  sbalyz  1987  opelopabsb  4238  bezoutlemmain  11931
  Copyright terms: Public domain W3C validator