ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxy GIF version

Theorem nfsbxy 1971
Description: Similar to hbsb 1978 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsbxy.1 𝑧𝜑
Assertion
Ref Expression
nfsbxy 𝑧[𝑦 / 𝑥]𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbxy
StepHypRef Expression
1 ax-bndl 1533 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 nfs1v 1968 . . . 4 𝑧[𝑦 / 𝑧]𝜑
3 drsb1 1823 . . . . 5 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43drnf2 1758 . . . 4 (∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑))
52, 4mpbii 148 . . 3 (∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
6 a16nf 1890 . . . 4 (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
7 df-nf 1485 . . . . . 6 (Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
87albii 1494 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 ↔ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
9 sb5 1912 . . . . . 6 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
10 nfa1 1565 . . . . . . 7 𝑥𝑥𝑧 𝑥 = 𝑦
11 sp 1535 . . . . . . . 8 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦)
12 nfsbxy.1 . . . . . . . . 9 𝑧𝜑
1312a1i 9 . . . . . . . 8 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
1411, 13nfand 1592 . . . . . . 7 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧(𝑥 = 𝑦𝜑))
1510, 14nfexd 1785 . . . . . 6 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝑥(𝑥 = 𝑦𝜑))
169, 15nfxfrd 1499 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
178, 16sylbir 135 . . . 4 (∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
186, 17jaoi 718 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
195, 18jaoi 718 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
201, 19ax-mp 5 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  wal 1371  wnf 1484  wex 1516  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  nfsb  1975  sbalyz  2028  opelopabsb  4314  bezoutlemmain  12394
  Copyright terms: Public domain W3C validator