Proof of Theorem nfsbxy
Step | Hyp | Ref
| Expression |
1 | | ax-bndl 1502 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
2 | | nfs1v 1932 |
. . . 4
⊢
Ⅎ𝑧[𝑦 / 𝑧]𝜑 |
3 | | drsb1 1792 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
4 | 3 | drnf2 1727 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
5 | 2, 4 | mpbii 147 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
6 | | a16nf 1859 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
7 | | df-nf 1454 |
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
8 | 7 | albii 1463 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
9 | | sb5 1880 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
10 | | nfa1 1534 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦 |
11 | | sp 1504 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦) |
12 | | nfsbxy.1 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝜑 |
13 | 12 | a1i 9 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
14 | 11, 13 | nfand 1561 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
15 | 10, 14 | nfexd 1754 |
. . . . . 6
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
16 | 9, 15 | nfxfrd 1468 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
17 | 8, 16 | sylbir 134 |
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
18 | 6, 17 | jaoi 711 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
19 | 5, 18 | jaoi 711 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
20 | 1, 19 | ax-mp 5 |
1
⊢
Ⅎ𝑧[𝑦 / 𝑥]𝜑 |