Proof of Theorem nfsbxy
| Step | Hyp | Ref
| Expression |
| 1 | | ax-bndl 1523 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 2 | | nfs1v 1958 |
. . . 4
⊢
Ⅎ𝑧[𝑦 / 𝑧]𝜑 |
| 3 | | drsb1 1813 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 4 | 3 | drnf2 1748 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → (Ⅎ𝑧[𝑦 / 𝑧]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
| 5 | 2, 4 | mpbii 148 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 6 | | a16nf 1880 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 7 | | df-nf 1475 |
. . . . . 6
⊢
(Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 8 | 7 | albii 1484 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 9 | | sb5 1902 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 10 | | nfa1 1555 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑧 𝑥 = 𝑦 |
| 11 | | sp 1525 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧 𝑥 = 𝑦) |
| 12 | | nfsbxy.1 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝜑 |
| 13 | 12 | a1i 9 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| 14 | 11, 13 | nfand 1582 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
| 15 | 10, 14 | nfexd 1775 |
. . . . . 6
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 16 | 9, 15 | nfxfrd 1489 |
. . . . 5
⊢
(∀𝑥Ⅎ𝑧 𝑥 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 17 | 8, 16 | sylbir 135 |
. . . 4
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 18 | 6, 17 | jaoi 717 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 19 | 5, 18 | jaoi 717 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 20 | 1, 19 | ax-mp 5 |
1
⊢
Ⅎ𝑧[𝑦 / 𝑥]𝜑 |