ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axsep2 GIF version

Theorem axsep2 4108
Description: A less restrictive version of the Separation Scheme ax-sep 4107, where variables 𝑥 and 𝑧 can both appear free in the wff 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version was derived from the more restrictive ax-sep 4107 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
axsep2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem axsep2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . . . . 7 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
21anbi1d 462 . . . . . 6 (𝑤 = 𝑧 → ((𝑥𝑤 ∧ (𝑥𝑧𝜑)) ↔ (𝑥𝑧 ∧ (𝑥𝑧𝜑))))
3 anabs5 568 . . . . . 6 ((𝑥𝑧 ∧ (𝑥𝑧𝜑)) ↔ (𝑥𝑧𝜑))
42, 3bitrdi 195 . . . . 5 (𝑤 = 𝑧 → ((𝑥𝑤 ∧ (𝑥𝑧𝜑)) ↔ (𝑥𝑧𝜑)))
54bibi2d 231 . . . 4 (𝑤 = 𝑧 → ((𝑥𝑦 ↔ (𝑥𝑤 ∧ (𝑥𝑧𝜑))) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
65albidv 1817 . . 3 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑤 ∧ (𝑥𝑧𝜑))) ↔ ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
76exbidv 1818 . 2 (𝑤 = 𝑧 → (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑤 ∧ (𝑥𝑧𝜑))) ↔ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
8 ax-sep 4107 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑤 ∧ (𝑥𝑧𝜑)))
97, 8chvarv 1930 1 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator