![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > a9evsep | GIF version |
Description: Derive a weakened version of ax-i9 1530, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 4123 and Extensionality ax-ext 2159. The theorem ¬ ∀𝑥¬ 𝑥 = 𝑦 also holds (ax9vsep 4128), but in intuitionistic logic ∃𝑥𝑥 = 𝑦 is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
a9evsep | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-sep 4123 | . 2 ⊢ ∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) | |
2 | id 19 | . . . . . . . 8 ⊢ (𝑧 = 𝑧 → 𝑧 = 𝑧) | |
3 | 2 | biantru 302 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) |
4 | 3 | bibi2i 227 | . . . . . 6 ⊢ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧)))) |
5 | 4 | biimpri 133 | . . . . 5 ⊢ ((𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
6 | 5 | alimi 1455 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
7 | ax-ext 2159 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → 𝑥 = 𝑦) |
9 | 8 | eximi 1600 | . 2 ⊢ (∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∃𝑥 𝑥 = 𝑦) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 ax-ext 2159 ax-sep 4123 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax9vsep 4128 |
Copyright terms: Public domain | W3C validator |