ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a9evsep GIF version

Theorem a9evsep 4104
Description: Derive a weakened version of ax-i9 1518, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 4100 and Extensionality ax-ext 2147. The theorem ¬ ∀𝑥¬ 𝑥 = 𝑦 also holds (ax9vsep 4105), but in intuitionistic logic 𝑥𝑥 = 𝑦 is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a9evsep 𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem a9evsep
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-sep 4100 . 2 𝑥𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧)))
2 id 19 . . . . . . . 8 (𝑧 = 𝑧𝑧 = 𝑧)
32biantru 300 . . . . . . 7 (𝑧𝑦 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧)))
43bibi2i 226 . . . . . 6 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))))
54biimpri 132 . . . . 5 ((𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → (𝑧𝑥𝑧𝑦))
65alimi 1443 . . . 4 (∀𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → ∀𝑧(𝑧𝑥𝑧𝑦))
7 ax-ext 2147 . . . 4 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
86, 7syl 14 . . 3 (∀𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → 𝑥 = 𝑦)
98eximi 1588 . 2 (∃𝑥𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → ∃𝑥 𝑥 = 𝑦)
101, 9ax-mp 5 1 𝑥 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ax9vsep  4105
  Copyright terms: Public domain W3C validator