| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > a9evsep | GIF version | ||
| Description: Derive a weakened version of ax-i9 1544, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 4151 and Extensionality ax-ext 2178. The theorem ¬ ∀𝑥¬ 𝑥 = 𝑦 also holds (ax9vsep 4156), but in intuitionistic logic ∃𝑥𝑥 = 𝑦 is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| a9evsep | ⊢ ∃𝑥 𝑥 = 𝑦 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-sep 4151 | . 2 ⊢ ∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) | |
| 2 | id 19 | . . . . . . . 8 ⊢ (𝑧 = 𝑧 → 𝑧 = 𝑧) | |
| 3 | 2 | biantru 302 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) | 
| 4 | 3 | bibi2i 227 | . . . . . 6 ⊢ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧)))) | 
| 5 | 4 | biimpri 133 | . . . . 5 ⊢ ((𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | 
| 6 | 5 | alimi 1469 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | 
| 7 | ax-ext 2178 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → 𝑥 = 𝑦) | 
| 9 | 8 | eximi 1614 | . 2 ⊢ (∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∃𝑥 𝑥 = 𝑦) | 
| 10 | 1, 9 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ax9vsep 4156 | 
| Copyright terms: Public domain | W3C validator |