| Step | Hyp | Ref
| Expression |
| 1 | | alexnim 1662 |
. 2
⊢
(∀𝑥∃𝑦 ¬ 𝑦 ∈ 𝑥 → ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥) |
| 2 | | ax-sep 4151 |
. . 3
⊢
∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) |
| 3 | | elequ1 2171 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) |
| 4 | | elequ1 2171 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 5 | | elequ1 2171 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| 6 | | elequ2 2172 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) |
| 7 | 5, 6 | bitrd 188 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) |
| 8 | 7 | notbid 668 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 9 | 4, 8 | anbi12d 473 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) |
| 10 | 3, 9 | bibi12d 235 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) ↔ (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)))) |
| 11 | 10 | spv 1874 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) |
| 12 | | pclem6 1385 |
. . . 4
⊢ ((𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)) → ¬ 𝑦 ∈ 𝑥) |
| 13 | 11, 12 | syl 14 |
. . 3
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → ¬ 𝑦 ∈ 𝑥) |
| 14 | 2, 13 | eximii 1616 |
. 2
⊢
∃𝑦 ¬ 𝑦 ∈ 𝑥 |
| 15 | 1, 14 | mpg 1465 |
1
⊢ ¬
∃𝑥∀𝑦 𝑦 ∈ 𝑥 |