ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nalset GIF version

Theorem nalset 4213
Description: No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
nalset ¬ ∃𝑥𝑦 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem nalset
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alexnim 1694 . 2 (∀𝑥𝑦 ¬ 𝑦𝑥 → ¬ ∃𝑥𝑦 𝑦𝑥)
2 ax-sep 4201 . . 3 𝑦𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧))
3 elequ1 2204 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝑦𝑦𝑦))
4 elequ1 2204 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑥𝑦𝑥))
5 elequ1 2204 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑧))
6 elequ2 2205 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
75, 6bitrd 188 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑦))
87notbid 671 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑧 ↔ ¬ 𝑦𝑦))
94, 8anbi12d 473 . . . . . 6 (𝑧 = 𝑦 → ((𝑧𝑥 ∧ ¬ 𝑧𝑧) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
103, 9bibi12d 235 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) ↔ (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦))))
1110spv 1906 . . . 4 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
12 pclem6 1416 . . . 4 ((𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)) → ¬ 𝑦𝑥)
1311, 12syl 14 . . 3 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → ¬ 𝑦𝑥)
142, 13eximii 1648 . 2 𝑦 ¬ 𝑦𝑥
151, 14mpg 1497 1 ¬ ∃𝑥𝑦 𝑦𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wal 1393  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202  ax-14 2203  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  vnex  4214
  Copyright terms: Public domain W3C validator