![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfauscl | GIF version |
Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 3955, we invoke the Axiom of Extensionality (indirectly via vtocl 2673), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
zfauscl.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfauscl | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfauscl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq2 2151 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | anbi1d 453 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | 3 | bibi2d 230 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
5 | 4 | albidv 1752 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | exbidv 1753 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
7 | ax-sep 3955 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
8 | 1, 6, 7 | vtocl 2673 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∀wal 1287 = wceq 1289 ∃wex 1426 ∈ wcel 1438 Vcvv 2619 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-ext 2070 ax-sep 3955 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-v 2621 |
This theorem is referenced by: inex1 3971 bj-d0clsepcl 11703 |
Copyright terms: Public domain | W3C validator |