ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ru GIF version

Theorem ru 2825
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 3922. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru {𝑥𝑥𝑥} ∉ V

Proof of Theorem ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm5.19 655 . . . . . 6 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 eleq1 2145 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 df-nel 2345 . . . . . . . . 9 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
4 id 19 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
54, 4eleq12d 2153 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
65notbid 625 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
73, 6syl5bb 190 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
82, 7bibi12d 233 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
98spv 1783 . . . . . 6 (∀𝑥(𝑥𝑦𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
101, 9mto 621 . . . . 5 ¬ ∀𝑥(𝑥𝑦𝑥𝑥)
11 abeq2 2191 . . . . 5 (𝑦 = {𝑥𝑥𝑥} ↔ ∀𝑥(𝑥𝑦𝑥𝑥))
1210, 11mtbir 629 . . . 4 ¬ 𝑦 = {𝑥𝑥𝑥}
1312nex 1430 . . 3 ¬ ∃𝑦 𝑦 = {𝑥𝑥𝑥}
14 isset 2616 . . 3 ({𝑥𝑥𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝑥𝑥})
1513, 14mtbir 629 . 2 ¬ {𝑥𝑥𝑥} ∈ V
16 df-nel 2345 . 2 ({𝑥𝑥𝑥} ∉ V ↔ ¬ {𝑥𝑥𝑥} ∈ V)
1715, 16mpbir 144 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1283   = wceq 1285  wex 1422  wcel 1434  {cab 2069  wnel 2344  Vcvv 2612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nel 2345  df-v 2614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator