ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ru GIF version

Theorem ru 3027
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4202. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru {𝑥𝑥𝑥} ∉ V

Proof of Theorem ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm5.19 711 . . . . . 6 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 eleq1 2292 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 df-nel 2496 . . . . . . . . 9 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
4 id 19 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
54, 4eleq12d 2300 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
65notbid 671 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
73, 6bitrid 192 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
82, 7bibi12d 235 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
98spv 1906 . . . . . 6 (∀𝑥(𝑥𝑦𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
101, 9mto 666 . . . . 5 ¬ ∀𝑥(𝑥𝑦𝑥𝑥)
11 abeq2 2338 . . . . 5 (𝑦 = {𝑥𝑥𝑥} ↔ ∀𝑥(𝑥𝑦𝑥𝑥))
1210, 11mtbir 675 . . . 4 ¬ 𝑦 = {𝑥𝑥𝑥}
1312nex 1546 . . 3 ¬ ∃𝑦 𝑦 = {𝑥𝑥𝑥}
14 isset 2806 . . 3 ({𝑥𝑥𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝑥𝑥})
1513, 14mtbir 675 . 2 ¬ {𝑥𝑥𝑥} ∈ V
16 df-nel 2496 . 2 ({𝑥𝑥𝑥} ∉ V ↔ ¬ {𝑥𝑥𝑥} ∈ V)
1715, 16mpbir 146 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1393   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wnel 2495  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nel 2496  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator