ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ru GIF version

Theorem ru 2950
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4100. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru {𝑥𝑥𝑥} ∉ V

Proof of Theorem ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm5.19 696 . . . . . 6 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 eleq1 2229 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 df-nel 2432 . . . . . . . . 9 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
4 id 19 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
54, 4eleq12d 2237 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
65notbid 657 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
73, 6syl5bb 191 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
82, 7bibi12d 234 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
98spv 1848 . . . . . 6 (∀𝑥(𝑥𝑦𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
101, 9mto 652 . . . . 5 ¬ ∀𝑥(𝑥𝑦𝑥𝑥)
11 abeq2 2275 . . . . 5 (𝑦 = {𝑥𝑥𝑥} ↔ ∀𝑥(𝑥𝑦𝑥𝑥))
1210, 11mtbir 661 . . . 4 ¬ 𝑦 = {𝑥𝑥𝑥}
1312nex 1488 . . 3 ¬ ∃𝑦 𝑦 = {𝑥𝑥𝑥}
14 isset 2732 . . 3 ({𝑥𝑥𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝑥𝑥})
1513, 14mtbir 661 . 2 ¬ {𝑥𝑥𝑥} ∈ V
16 df-nel 2432 . 2 ({𝑥𝑥𝑥} ∉ V ↔ ¬ {𝑥𝑥𝑥} ∈ V)
1715, 16mpbir 145 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wnel 2431  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nel 2432  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator