| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ru | GIF version | ||
| Description: Russell's Paradox.
Proposition 4.14 of [TakeutiZaring] p.
14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4202. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| ru | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.19 711 | . . . . . 6 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
| 2 | eleq1 2292 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
| 3 | df-nel 2496 | . . . . . . . . 9 ⊢ (𝑥 ∉ 𝑥 ↔ ¬ 𝑥 ∈ 𝑥) | |
| 4 | id 19 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 5 | 4, 4 | eleq12d 2300 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 6 | 5 | notbid 671 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 7 | 3, 6 | bitrid 192 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∉ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 8 | 2, 7 | bibi12d 235 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
| 9 | 8 | spv 1906 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 10 | 1, 9 | mto 666 | . . . . 5 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) |
| 11 | abeq2 2338 | . . . . 5 ⊢ (𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥)) | |
| 12 | 10, 11 | mtbir 675 | . . . 4 ⊢ ¬ 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 13 | 12 | nex 1546 | . . 3 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 14 | isset 2806 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
| 15 | 13, 14 | mtbir 675 | . 2 ⊢ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V |
| 16 | df-nel 2496 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V) | |
| 17 | 15, 16 | mpbir 146 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∉ wnel 2495 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nel 2496 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |