![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfrep6 | GIF version |
Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4147 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.) |
Ref | Expression |
---|---|
zfrep6 | ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑤𝜑 | |
2 | 1 | repizf 4145 | 1 ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 ∃!weu 2042 ∀wral 2472 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-coll 4144 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-ral 2477 |
This theorem is referenced by: funimaexglem 5337 |
Copyright terms: Public domain | W3C validator |