![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfrep6 | GIF version |
Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 3922 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.) |
Ref | Expression |
---|---|
zfrep6 | ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . 2 ⊢ Ⅎ𝑤𝜑 | |
2 | 1 | repizf 3920 | 1 ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1422 ∃!weu 1943 ∀wral 2353 ∃wrex 2354 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-coll 3919 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-eu 1946 df-ral 2358 |
This theorem is referenced by: funimaexglem 5050 |
Copyright terms: Public domain | W3C validator |