| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfrep6 | GIF version | ||
| Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4167 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.) |
| Ref | Expression |
|---|---|
| zfrep6 | ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 2 | 1 | repizf 4165 | 1 ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∃!weu 2055 ∀wral 2485 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-coll 4164 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-ral 2490 |
| This theorem is referenced by: funimaexglem 5363 |
| Copyright terms: Public domain | W3C validator |