![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfrep6 | GIF version |
Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4123 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.) |
Ref | Expression |
---|---|
zfrep6 | ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑤𝜑 | |
2 | 1 | repizf 4121 | 1 ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1492 ∃!weu 2026 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-coll 4120 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-ral 2460 |
This theorem is referenced by: funimaexglem 5301 |
Copyright terms: Public domain | W3C validator |