Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfrep6 GIF version

Theorem zfrep6 3977
 Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 3978 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem zfrep6
StepHypRef Expression
1 nfv 1473 . 2 𝑤𝜑
21repizf 3976 1 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∃wex 1433  ∃!weu 1955  ∀wral 2370  ∃wrex 2371 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-coll 3975 This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700  df-eu 1958  df-ral 2375 This theorem is referenced by:  funimaexglem  5131
 Copyright terms: Public domain W3C validator